Log in

Synthesis of Sulfur/Selenium-containing Polyester with Recyclability and Controllable Hydrophilicity and Glass Transition Temperature

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We present a ring-opening polymerization of bridged cyclic lactone utilizing alcohol as the initiator and organic base as the catalyst. Bridged γ-butyrolactone monomers (PhSGBL and PhSeGBL) were synthesized efficiently from commercially available 3-cyclohexene-1-carboxylic acid. Due to the ring strain of the bridged structure, ring-opening polymerization of this type of γ-butyrolactone derivative was successfully carried out under mild conditions, e.g., using ethylene glycol as the initiator and a commercial catalyst [1,5,7-triazabicyclo [4.4.0 dec-5-ene (TBD)] as the catalyst at 30 °C. The obtained polymer could be degraded to its monomer for recycling in the presence of ZnCl2 as a catalyst. PhSGBL and PhSeGBL could also be copolymerized with ε-caprolactone to tune the glass transition temperature. Additionally, the hydrophilicity of the obtained sulfur-containing polymers could be adjusted by selectively oxidizing the thioether side group to sulfone/sulfoxide, which offered a way to tune the hydrophilicity of polyester. On the other hand, the obtained selenium-containing compound could be degraded in the presence of m-CPBA (3-chloroperbenzoic acid), which offered potential application in sustained drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lecomte, P.; Jérôme, C. Recent developments in ring-opening polymerization of lactones. Adv. Polym. Sci. 2011, 245, 173–217.

    Article  Google Scholar 

  2. Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials. Chem. Rev. 2017, 117, 1319–1406.

    Article  CAS  Google Scholar 

  3. Hillmyer, M. A.; Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 2014, 47, 2390–6.

    Article  CAS  PubMed  Google Scholar 

  4. Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554.

    Article  CAS  Google Scholar 

  5. Zhang, L. J.; Deng, X. X.; Du, F. S.; Li, Z. C. Chemical synthesis of functional poly(4-hydroxybutyrate) with controlled degradation via intramolecular cyclization. Macromolecules 2013, 46, 9554–9562.

    Article  CAS  Google Scholar 

  6. Houk, K. N.; Jabbarim, A.; Hall, H. K.; Alemán, C. Why δ-valerolactone polymerizes and γ-butyrolactone does not. J. Org. Chem. 2008, 73, 2674–2678.

    Article  CAS  PubMed  Google Scholar 

  7. Hong, M.; Chen, E. Y. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of gamma-butyrolactone. Nat. Chem. 2016, 8, 42–49.

    Article  CAS  PubMed  Google Scholar 

  8. Hong, M.; Chen, E. Y. X. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 2016, 55, 4188–4193.

    Article  CAS  Google Scholar 

  9. Zhao, N.; Ren, C.; Li, H.; Li, Y.; Liu, S.; Li, Z. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. 2017, 56, 12987–12990.

    Article  CAS  Google Scholar 

  10. Zhang, C. J.; Hu, L. F.; Wu, H. L.; Cao, X. H.; Zhang, X. H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules 2018, 51, 8705–8711.

    Article  CAS  Google Scholar 

  11. Li, Y. Y.; **ng, D.; Pan, X. Q.; Zhu, J. Synthesis and antibacterial activity of selenium-functionalized poly(ε-caprolactone). Chinese J. Polym. Sci. 2022, 40, 67–74.

    Article  Google Scholar 

  12. Lin, L.; Han, D.; Qin, J.; Wang, S.; **ao, M.; Sun, L.; Meng, Y. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules 2018, 51, 9317–9322.

    Article  CAS  Google Scholar 

  13. Liu, S.; Ren, C.; Zhao, N.; Shen, Y.; Li, Z. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun. 2018, 39, 1800485.

    Article  Google Scholar 

  14. Zhu, J. B.; Watson, E. M.; Tang, J.; Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science 2018, 360, 398–403.

    Article  CAS  Google Scholar 

  15. Shi, C.; Reilly, L. T.; Phani Kumar, V. S.; Coile, M. W.; Nicholson, S. R.; Broadbelt, L. J.; Beckham, G. T.; Chen, E. Y. X. Design principles for intrinsically circular polymers with tunable properties. Chem 2021, 7, 2896–2912.

    Article  CAS  Google Scholar 

  16. Liu, Y.; Wu, J.; Hu, X.; Zhu, N.; Guo, K. Advances, challenges, and opportunities of poly(γ-butyrolactone)-based recyclable polymers. ACS Macro Lett. 2021, 10, 284–296.

    Article  PubMed  Google Scholar 

  17. Walther, P.; Frey, W.; Naumann, S. Polarized olefins as enabling (co)catalysts for the polymerization of γ-butyrolactone. Polym. Chem. 2018, 9, 3674–3683.

    Article  CAS  Google Scholar 

  18. Puchelle, V.; Latreyte, Y.; Girardot, M.; Garnotel, L.; Levesque, L.; Coutelier, O.; Destarac, M.; Guégan, P.; Illy, N. Functional poly(ester-alt-sulfide)s synthesized by organo-catalyzed anionic ring-opening alternating copolymerization of oxiranes and γ-thiobutyrolactones. Macromolecules 2020, 53, 5188–5198.

    Article  CAS  Google Scholar 

  19. Shi, C.; Clarke, R. W.; McGraw, M. L.; Chen, E. Y. X. Closing the “one monomer-two polymers-one monomer” loop via orthogonal (de)polymerization of a lactone/olefin hybrid. J. Am. Chem. Soc. 2022, 144, 2264–2275.

    Article  CAS  PubMed  Google Scholar 

  20. Shi, C.; Li, Z. C.; Caporaso, L.; Cavallo, L.; Falivene, L.; Chen, E. Y. X. Hybrid monomer design for unifying conflicting polymerizability, recyclability, and performance properties. Chem 2021, 7, 670–685.

    Article  CAS  Google Scholar 

  21. Nicolaou, K. C. Organoselenium-induced cyclizations in organic synthesis. Tetrahedron 1981, 37, 4097–4109.

    Article  CAS  Google Scholar 

  22. McCune, C. D.; Beio, M. L.; Sturdivant, J. M.; de la Salud-Bea, R.; Darnell, B. M.; Berkowitz, D. B. Synthesis and deployment of an elusive fluorovinyl cation equivalent: access to quaternary α-(1-fluoro)vinyl amino acids as potential PLP enzyme inactivators. J. Am. Chem. Soc. 2017, 139, 14077–14089.

    Article  CAS  PubMed Central  Google Scholar 

  23. Jaffredo, C. G.; Carpentier, J. F.; Guillaume, S. M. Organocatalyzed controlled ROP of β-lactones towards poly(hydroxyalkanoate)s: from β-butyrolactone to benzyl β-malolactone polymers. Polym. Chem. 2013, 4, 3837.

    Article  CAS  Google Scholar 

  24. Jaffredo, C. G.; Carpentier, J. F.; Guillaume, S. M. Poly(hydroxyalkanoate) block or random copolymers of β-butyrolactone and benzyl β-malolactone: a matter of catalytic tuning. Macromolecules 2013, 46, 6765–6776.

    Article  CAS  Google Scholar 

  25. Pascual, A.; Sardón, H.; Ruipérez, F.; Gracia, R.; Sudam, P.; Veloso, A.; Mecerreyes, D. Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 552–561.

    Article  CAS  Google Scholar 

  26. Nsengiyumva, O.; Miller, S. A. Synthesis, characterization, and water-degradation of biorenewable polyesters derived from natural camphoric acid. Green Chem. 2019, 21, 973–978.

    Article  CAS  Google Scholar 

  27. Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 2021, 590, 423–427.

    Article  PubMed  Google Scholar 

  28. De Hoe, G. X.; Zumstein, M. T.; Tiegs, B. J.; Brutman, J. P.; McNeill, K.; Sander, M.; Coates, G. W.; Hillmyer, M. A. Sustainable polyester elastomers from lactones: synthesis, properties, and enzymatic hydrolyzability. J. Am. Chem. Soc. 2018, 140, 963–973.

    Article  CAS  PubMed  Google Scholar 

  29. Peponi, L.; Sessini, V.; Arrieta, M. P.; Navarro-Baena, I.; Sonseca, A.; Dominici, F.; Gimenez, E.; Torre, L.; Tercjak, A.; Lopez, D.; Kenny, J. M. Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polym. Degrad. Stabil. 2018, 151, 36–51.

    Article  CAS  Google Scholar 

  30. Vollmer, I.; Jenks, M. J. F.; Roelands, M. C. P.; White, R. J.; van Harmelen, T.; de Wild, P.; van der Laan, G. P.; Meirer, F.; Keurentjes, J. T. F.; Weckhuysen, B. M. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423.

    Article  CAS  Google Scholar 

  31. Hedir, G. G.; Bell, C. A.; O’Reilly, R. K.; Dove, A. P. Functional degradable polymers by radical ring-opening copolymerization of MDO and vinyl bromobutanoate: synthesis, degradability and post-polymerization modification. Biomacromolecules 2015, 16, 2049–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H.A. Leiper, I. C. M. Degradation studies of some polyesters and polycarbonates—2. Polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym. Degrad. Stabil. 1985, 11, 309–326.

    Article  Google Scholar 

  33. Liu, Y. H.; Yuan, X.; Wu, J. Q.; Luo, M. X.; Hu, X.; Zhu, N.; Guo, K. Fully chemical recyclable poly(γ-butyrolactone)-based copolymers with tunable structures and properties. Chinese J. Polym. Sci. 2022, 40, 456–461.

    Article  CAS  Google Scholar 

  34. Wu, J. a.; Ding, C.; **ng, D.; Zhang, Z.; Huang, X.; Zhu, X.; Pan, X.; Zhu, J. The functionalization of poly(ε-caprolactone) as a versatile platform using ε-(α-phenylseleno) caprolactone as a monomer. Polym. Chem. 2019, 10, 3851–3858.

    Article  CAS  Google Scholar 

  35. Mir, A. A.; Wagner, S.; Krämer, R. H.; Deglmann, P.; Emrick, T. Deoxybenzoin-containing polysulfones and polysulfoxides: synthesis and thermal properties. Polymer 2016, 84, 59–64.

    Article  CAS  Google Scholar 

  36. Chen, S.; Guo, J.; Zhang, B.; Zhang, S.; Gong, Y.; Gong, X. Hydrophilic modified polyester based on waste PET bottles. AATCC J. Res. 2018, 5, 15–20.

    Article  Google Scholar 

  37. Mancini, S. D. M., Itley G.; Almeida, Rômulo F. Determinação da Variação da Viscosidade Intrínseca do Poli (Tereftalato de Etileno) de Embalagens. Polymers 2004, 14, 69–73.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key Research and Development Program of China (No. 2022YFB3704905), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ang-Qiang Pan or Jian Zhu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_2994_MOESM1_ESM.pdf

Synthesis of Sulfur/Selenium-containing Polyester with Recyclability and Controllable Hydrophilicity and Glass Transition Temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WJ., Pan, XQ., Zhu, J. et al. Synthesis of Sulfur/Selenium-containing Polyester with Recyclability and Controllable Hydrophilicity and Glass Transition Temperature. Chin J Polym Sci 41, 1836–1845 (2023). https://doi.org/10.1007/s10118-023-2994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2994-3

Keywords

Navigation