Log in

High-temperature Thermo-oxidative Aging of Vulcanized Natural Rubber Nanocomposites: Evolution of Microstructure and Mechanical Properties

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The aging of natural rubber (NR) at high temperatures will seriously affect its service lifetime in many key applications. In the present work, the changes in microstructure and mechanical properties of semi-efficient vulcanized NR/carbon black (CB) vulcanizates during thermo-oxidative aging at high temperatures (150–200 °C) and a moderate temperature (95 °C) were compared. At high temperatures, a two-stage aging behavior, which was characteristic of a first rapid decline and then a continuous rise in the crosslinking density (ve), was identified and was found to be closely related to the depletion behavior of antioxidants. The surface cracking behavior observed in the second stage of high-temperature aging was discussed in terms of the grafting reaction of macromolecular radicals on CB particles and thermal expansion. In contrast, the aging of NR at moderate temperatures was much mild, which featured a continuous increase in ve and an oxidation mechanism dominated by peroxy radicals attacking double bonds. In general, the mechanical properties of NR vulcanizates during high-temperature aging depended on the competition effects of structural evolution in the crosslinked network and oxidation-induced chain scission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabsan, N.; Wirasate, S.; Suchiva, K. Abrasion behavior of layered silicate reinforced natural rubber. Wear 2010, 269, 394–404

    Article  CAS  Google Scholar 

  2. Chen, Q.; Zhang, Z.; Huang, Y.; Zhao, H.; Chen, Z.; Gao, K.; Yue, T.; Zhang, L.; Liu, J. Structure-mechanics relation of natural rubber: insights from molecular dynamics simulations. ACS Appl. Polym. Mater. 2022, 4, 3575–3586

    Article  CAS  Google Scholar 

  3. Shi, X.; Sun, S.; Zhao, A.; Zhang, H.; Zuo, M.; Song, Y.; Zheng, Q. Influence of carbon black on the Payne effect of filled natural rubber compounds. Compos. Sci. Technol. 2021, 203, 108586

    Article  CAS  Google Scholar 

  4. Grasland, F.; Chazeau, L.; Chenal, J. M. About thermo-oxidative ageing at moderate temperature of conventionally vulcanized natural rubber. Polym. Degrad. Stabil. 2019, 161, 74–84

    Article  CAS  Google Scholar 

  5. Lee, Y. H.; Cho, M.; Nam, J. D.; Lee, Y. Effect of ZnO particle sizes on thermal aging behavior of natural rubber vulcanizates. Polym. Degrad. Stabil. 2018, 148, 50–55

    Article  CAS  Google Scholar 

  6. Zhang, Z.; Sun, J.; Lai, Y.; Wang, Y.; Liu, X.; Shi, S.; Chen, X. Effects of thermal aging on uniaxial ratcheting behavior of vulcanised natural rubber. Polym. Test. 2018, 70, 102–110

    Article  CAS  Google Scholar 

  7. Datta, R.; Huntink, N.; Datta, S.; Talma, A. Rubber vulcanizates degradation and stabilization. Rubber. Chem. Technol. 2007, 80, 436–480.

    Article  CAS  Google Scholar 

  8. Howse, S.; Porter, C.; Mengistu, T.; Petrov, I.; Pazur, R. J. Experimental determination of the quantity and distribution of chemical crosslinks in unaged and aged natural rubber. II: A sulfur donor system. Rubber. Chem. Technol. 2019, 92, 513–530

    Article  CAS  Google Scholar 

  9. Zheng, W.; Liu, L.; Zhao, X.; He, J.; Wang, A.; Chan, T. W.; Wu, S. Effects of lanthanum complex on the thermo-oxidative aging of natural rubber. Polym. Degrad. Stabil. 2015, 120, 377–383

    Article  CAS  Google Scholar 

  10. Choi, S. S.; Kim, E. A novel system for measurement of types and densities of sulfur crosslinks of a filled rubber vulcanizate. Polym. Test. 2015, 42, 62–68

    Article  CAS  Google Scholar 

  11. Sun, Y.; Huang, J.; He, J.; Tang, Z.; Zhu, L.; Liu, F. Effects of a novel hindered phenol samarium complex on the thermo-oxidative aging of styrene-butadiene rubber/silica composites. Polym. Degrad. Stabil. 2021, 185, 109482

    Article  CAS  Google Scholar 

  12. Colin, X.; Audouin, L.; Verdu, J. Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Part 3: Oxidation induced changes of elastic properties. Polym. Degrad. Stabil. 2007, 92, 906–914

    Article  CAS  Google Scholar 

  13. Li, G. Y.; Koenig, J. L. A review of rubber oxidation. Rubber. Chem. Technol. 2005, 78, 355–390

    Article  CAS  Google Scholar 

  14. Alroqi, A. A.; Wang, W.; Zhao, Y. Aircraft tire temperature at touchdown with wheel prerotation. J. Aircraft. 2016, 54, 926–938

    Article  Google Scholar 

  15. Chen, X.; Kong, Y.; Wang, M.; Huang, X.; Huang, Y.; Lv, Y.; Li, G. Wear and aging behavior of vulcanized natural rubber nanocomposites under high-speed and high-load sliding wear conditions. Wear 2022, 498, 204341

    Article  Google Scholar 

  16. Valentín, J. L.; Mora-Barrantes, I.; Carretero-González, J.; López-Manchado, M. A.; Sotta, P.; Long, D. R.; Saalwächter, K. Novel experimental approach to evaluate filler-elastomer interactions. Macromolecules 2010, 43, 334–346

    Article  Google Scholar 

  17. Wang, M.; Wang, R.; Chen, X.; Kong, Y.; Huang, Y.; Lv, Y.; Li, G. Effect of non-rubber components on the crosslinking structure and thermo-oxidative degradation of natural rubber. Polym. Degrad. Stabil. 2022, 196, 109845

    Article  CAS  Google Scholar 

  18. Ghosh, P.; Katare, S.; Patkar, P.; Caruthers, J. M.; Venkatasubramanian, V.; Walker, K. A. Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a rational kinetic model. Rubber. Chem. Technol. 2003, 76, 592–693

    Article  CAS  Google Scholar 

  19. Fu, D. H.; Zhan, Y. H.; Yan, N.; **a, H. S. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites. Express Polym. Lett. 2015, 9, 597–607

    Article  CAS  Google Scholar 

  20. Li, Y.; Liu, X.; Hu, X.; Luo, W. Changes in tensile and tearing fracture properties of carbon-black filled rubber vulcanizates by thermal aging. Polym. Adv. Technol. 2015, 26, 1331–1335

    Article  CAS  Google Scholar 

  21. Huang, M.; Lu, J.; Han, B.; Qiu, M.; Zhang, L. Covalent grafting approach for improving the dispersion of carbon black in styrene-butadiene rubber composites by copolymerizing p-(2,2′-diphenylethyl)styrene with a thermally decomposed triphenylethane pendant. Ind. Eng. Chem. Res. 2016, 55, 9459–9467

    Article  CAS  Google Scholar 

  22. Jamroż, M.; Kozłowski, K.; Sieniakowski, M.; Jachym, B. Use of ESR to investigate formation of free radicals on compounding rubbers with carbon blacks. J. Polym. Sci., Part A: Polym. Chem. 1977, 15, 1359–1367

    Google Scholar 

  23. Luo, K.; You, G.; Zhao, X.; Lu, L.; Wang, W.; Wu, S. Synergistic effects of antioxidant and silica on enhancing thermo-oxidative resistance of natural rubber: Insights from experiments and molecular simulations. Mater. Design. 2019, 181, 107944

    Article  CAS  Google Scholar 

  24. Yurekli, K.; Krishnamoorti, R.; Tse, M.; McElrath, K.; Tsou, A.; Wang, H. C. Structure and dynamics of carbon black-filled elastomers. J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 256–275.

    Article  CAS  Google Scholar 

  25. Schwartz, G. A.; Cerveny, S.; Marzocca, Á. J.; Gerspacher, M.; Nikiel, L. Thermal aging of carbon black filled rubber compounds. I. Experimental evidence for bridging flocculation. Polymer 2003, 44, 7229–7240

    Article  CAS  Google Scholar 

  26. Xu, Z.; Song, Y.; Zheng, Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels. Polymer 2019, 185, 121953

    Article  CAS  Google Scholar 

  27. Thajudin, N. L. N.; Zainol, M. H.; Shuib, R. K. Intrinsic room temperature self-healing natural rubber based on metal thiolate ionic network. Polym. Test. 2021, 93, 106975

    Article  Google Scholar 

  28. Naskar, K.; Kokot, D.; Noordermeer, J. Influence of various stabilizers on ageing of dicumyl peroxide-cured polypropylene/ethylene-propylene-diene thermoplastic vulcanizates. Polym. Degrad. Stabil. 2004, 85(2), 831–839.

    Article  CAS  Google Scholar 

  29. Edge, M.; Allen, N. S.; Gonzalez-Sanchez, R.; Liauw, C. M.; Read, S. J.; Whitehouse, R. B. The influence of cure and carbon black on the high temperature oxidation of natural rubber I. Correlation of physico-chemical changes. Polym. Degrad. Stabil. 1999, 64, 197–205

    Article  CAS  Google Scholar 

  30. Chaikumpollert, O.; Sae-Heng, K.; Wakisaka, O.; Mase, A.; Yamamoto, Y.; Kawahara, S. Low temperature degradation and characterization of natural rubber. Polym. Degrad. Stabil. 2011, 96, 1989–1995

    Article  CAS  Google Scholar 

  31. Zhuo, W. Y.; Wang, Q. L.; Li, G.; Yang, G.; Zhang, H.; Xu, W.; Niu, Y. H.; Li, G. X. Detection of the destruction mechanism of perfluorinated elastomer (FFKM) network under thermo-oxidative aging conditions. Chinese J. Polym. Sci. 2022, 40, 504–514

    Article  CAS  Google Scholar 

  32. Do, T.-T.; Celina, M.; Fredericks, P. M. Attenuated total reflectance infrared microspectroscopy of aged carbon-filled rubbers. Polym. Degrad. Stabil. 2002, 77, 417–422

    Article  CAS  Google Scholar 

  33. Song, P.; Wan, C.; **e, Y.; Zhang, Z.; Wang, S. Stepwise exfoliation of bound rubber from carbon black nanoparticles and the structure characterization. Polym. Test. 2018, 71, 115–124

    Article  CAS  Google Scholar 

  34. Colin, X.; Audouin, L.; Verdu, J. Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Part 1: Unvulcanized unstabilized polyisoprene. Polym. Degrad. Stabil. 2007, 92, 886–897

    Article  CAS  Google Scholar 

  35. Jordan, M. Interfaces in composites. reinforcement of elastomers by carbon black. J. Macromol. Sci. A 1974, 8, 579–592

    Article  CAS  Google Scholar 

  36. Dong, R.; Zhao, M.; **a, W.; Yi, X.; Dai, P.; Tang, N. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature. Waste. Manage. 2018, 79, 516–525.

    Article  CAS  Google Scholar 

  37. Kilbane, J. J. Desulfurization of coal: the microbial solution. Trends. Biotechnol. 1989, 7, 97–101

    Article  CAS  Google Scholar 

  38. Candau, N.; Laghmach, R.; Chazeau, L.; Chenal, J. M.; Gauthier, C.; Biben, T.; Munch, E. Strain-induced crystallization of natural rubber and cross-link densities heterogeneities. Macromolecules 2014, 47, 5815–5824

    Article  CAS  Google Scholar 

  39. Tomer, N. S.; Delor-Jestin, F.; Singh, R. P.; Lacoste, J. Cross-linking assessment after accelerated ageing of ethylene propylene diene monomer rubber. Polym. Degrad. Stabil. 2007, 92, 457–463

    Article  CAS  Google Scholar 

  40. Candau, N.; Oguz, O.; Peuvrel-Disdier, E.; Bouvard, J. L.; Pradille, C.; Billon, N. Strain-induced network chains damage in carbon black filled EPDM. Polymer 2019, 175, 329–338

    Article  CAS  Google Scholar 

  41. Baba, M.; Nedelec, J.; Lacoste, J.; Gardette, J.; Morel, M. Crosslinking of elastomers resulting from ageing: use of thermoporosimetry to characterise the polymeric network with n-heptane as condensate. Polym. Degrad. Stabil. 2003, 80, 305–313.

    Article  CAS  Google Scholar 

  42. Baba, M.; Gardette, J. L.; Lacoste, J. Crosslinking on ageing of elastomers II. Comparison of solvent freezing point depression and conventional crosslinking evaluation. Polym. Degrad. Stabil. 1999, 65, 415–420.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51790504 and U19A2096), the Programme of Introducing Talents of Discipline to Universities (No. B13040), and State Key Laboratory of Polymer Materials Engineering (No. sklpme2019-2-07). We would like to thank Mrs. Suiling Liu and Dr. Yong Luo from the Analytical & Testing Center of Sichuan University for their help in characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Jiang Huang or Guang-**an Li.

Additional information

Conflict of Interests

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZX., Kong, YR., Chen, XF. et al. High-temperature Thermo-oxidative Aging of Vulcanized Natural Rubber Nanocomposites: Evolution of Microstructure and Mechanical Properties. Chin J Polym Sci 41, 1287–1297 (2023). https://doi.org/10.1007/s10118-023-2948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2948-9

Keywords

Navigation