Log in

Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Compared with spherical micelles, rod/worm-like micelles not only have extended blood circulation duration, but also exhibit favorable cellular uptake behavior, which is promising for next-generation nanomedicine and biomaterials. However, the controllable fabrication of narrowly dispersed nanorods in aqueous media is still challenging. Herein, the methodology of thermal annealing was developed for the fabrication of helical nanorods as well as a series of nanorods with different lengths. The thermal annealing process generally consisted of adding a percentage of organic solvent (10%(V/V) or 20%(V/V)) to the digital micellar aqueous dispersion, followed by heating at 90 °C for 1 h, then cooling naturally to room temperature, and dialyzing against water to remove the organic solvent. Right-handed helical nanorods were afforded by the treatment of 45 nm digital micelles in the presence of 10%(V/V) dioxane, while left-handed helical nanorods were obtained in the presence of 20%(V/V) dioxane. Meanwhile, the controlled growth of rod-like digital micelles was achieved after thermal annealing in the presence of different types of organic solvents, and the length of the annealed nanorods was correlated with the types of organic solvent. Furthermore, no matter the size of initial digital micelles, they all exhibited similar trend of rod growth in the presence of a certain amount of organic solvent, allowing for controllable formulation of narrowly dispersed nanorods. In addition, supramolecular self-assembly by amphiphilic dendritic oligourethane readily fabricated diverse uniform nanorods in aqueous media. Overall, this work provided an attractive methodology to fabricate uniform digital nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn, J. M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. 1990, 29, 1304–1319.

    Article  Google Scholar 

  2. Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.

    Article  CAS  PubMed  Google Scholar 

  3. Yang, G.; Ding, H. M.; Kochovski, Z.; Hu, R.; Lu, Y.; Ma, Y. Q.; Chen, G.; Jiang, M. Highly ordered self-assembly of native proteins into 1D, 2D, and 3D structures modulated by the tether length of assembly-inducing ligands. Angew. Chem. Int. Ed. 2017, 56, 10691–10695.

    Article  CAS  Google Scholar 

  4. Zhang, L.; Qin, L.; Wang, X.; Cao, H.; Liu, M. Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions. Adv. Mater. 2014, 56, 6959–6964.

    Article  Google Scholar 

  5. Zhang, X. Supramolecular polymer chemistry: past, present, and future. Chinese J. Polym. Sci. 2022, 40, 541–542.

    Article  CAS  Google Scholar 

  6. Ye, J.; Cao, Y.; Lu, X.; Wu, F.; Liu, N.; Dong, Y.; Shi, Q. Self-assembly of DNA-organic hybrid amphiphiles by frame-guided assembly strategies. Giant 2022, 11, 100113.

    Article  CAS  Google Scholar 

  7. Luo, D.; Wu, L. X.; Zhang, Y.; Huang, Y. L.; Chen, X. L.; Zhou, X. P.; Li, D. Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement. Sci. China Chem. 2022, 65, 1105–1111.

    Article  CAS  Google Scholar 

  8. Wang, H.; Li, A.; Yang, M.; Zhao, Y.; Shi, L.; Ma, R. Self-assembled nanochaperones enable the disaggregation of amyloid insulin fibrils. Sci. China Chem. 2022, 65, 353–362.

    Article  CAS  Google Scholar 

  9. Geng, Z.; Wang, H.; **, S.-M.; Yan, X.; Ren, M.; **ong, B.; Wang, K.; Deng, R.; Chen, S.; Lee, E.; Zhang, L.; Zhu, J.; Yang, Z. Hierarchical microphase behaviors of chiral block copolymers under kinetic and thermodynamic control. CCS Chem. 2022, 4, 2460–2468.

    Article  CAS  Google Scholar 

  10. Zhu, Y.; Lu, Z. Dynamics simulations of supramolecular and polymeric self-assemblies. Acta Polymerica Sinica (in Chinese) 2021, 52, 884–897.

    CAS  Google Scholar 

  11. Wang, X.; Gao, P.; Wang, J.; Yang, Y.; You, Y.; Wu, D. A robust strategy for precise fabrication of rigid-flexible coupling dendrimers toward self-coordinated hierarchical assembly. CCS Chem. 2021, 3, 1093–1104.

    Article  CAS  Google Scholar 

  12. Zhao, L.; Li, S.; Liu, Y.; **ng, R.; Yan, X. Kinetically controlled self-assembly of phthalocyanine-peptide conjugate nanofibrils enabling superlarge redshifted absorption. CCS Chem. 2019, 1, 173–180.

    Article  CAS  Google Scholar 

  13. Zhang, L.; Eisenberg, A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1995, 268, 1728–1731.

    Article  CAS  PubMed  Google Scholar 

  14. Schacher, F. H.; Rupar, P. A.; Manners, I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed. 2012, 51, 7898–7921.

    Article  CAS  Google Scholar 

  15. Groschel, A. H.; Walther, A.; Lobling, T. I.; Schacher, F. H.; Schmalz, H.; Muller, A. H. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 2013, 503, 247–251.

    Article  PubMed  Google Scholar 

  16. Cornel, E. J.; Jiang, J.; Chen, S.; Du, J. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques. CCS Chem. 2021, 3, 2104–2125.

    Article  CAS  Google Scholar 

  17. Cao, S.; Shao, J.; Abdelmohsen, L. K. E. A.; Hest, J. C. M. Amphiphilic AIEgen-polymer aggregates: design, self-assembly and biomedical applications. Aggregate 2021, 3, e128.

    Google Scholar 

  18. Cheng, X.; Miao, T.; Yin, L.; Zhang, W.; Zhu, X. Construction of supramolecular chirality in polymer systems: chiral induction, transfer and application. Chinese J. Polym. Sci. 2021, 39, 1357–1375.

    Article  CAS  Google Scholar 

  19. Liu, Z.; Yao, Y.; Tao, X.; Wei, J.; Lin, S. Helical supramolecular nanorods via sequential meticulous tailoring of noncovalent interaction and light irradiation. Sci. China Chem. 2022, 65, 1749–1757.

    Article  CAS  Google Scholar 

  20. Li, H.; **ong, B.; Xu, J.; Zhu, J. Chiral transfer-dictated self-assembly of chiral block copolymers. Aggregate 2021, 2, e122.

    Article  CAS  Google Scholar 

  21. Fang, B.; Walther, A.; Wolf, A.; Xu, Y.; Yuan, J.; Muller, A. H. Undulated multicompartment cylinders by the controlled and directed stacking of polymer micelles with a compartmentalized corona. Angew. Chem. Int. Ed. 2009, 48, 2877–2880.

    Article  CAS  Google Scholar 

  22. Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325.

    Article  CAS  PubMed  Google Scholar 

  23. Ladmiral, V.; Semsarilar, M.; Canton, I.; Armes, S. P. Polymerization-induced self-assembly of galactose-functionalized biocompatible diblock copolymers for intracellular delivery. J. Am. Chem. Soc. 2013, 135, 13574–13581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan, J.; Deng, Z.; Song, C.; Xu, J.; Zhang, Y.; Yu, Y.; Hu, J.; Liu, S. Coordinating external and built-in triggers for tunable degradation of polymeric nanoparticles via cycle amplification. J. Am. Chem. Soc. 2021, 143, 13738–13748.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, G.; Tan, J.; Cen, J.; Zhang, G.; Hu, J.; Liu, S. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning. Nat. Commun. 2022, 13, 585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng, C.; Zhao, Y.; Liu, Y. Recent advances in self-assembled nano-therapeutics. Chinese J. Polym. Sci. 2018, 36, 322–346.

    Article  CAS  Google Scholar 

  27. Yang, Y. H.; Qin, Y.; Zhang, Y.; Zhang, L. Rotor orientation direction controls geometric curvature and chirality for assemblies of motor amphiphiles in water. Aggregate 2022, e268.

  28. Zhao, Z.; Dong, Y.; Duan, Z.; **, D.; Yuan, W.; Liu, D. DNA-organic molecular amphiphiles: Synthesis, self-assembly, and hierarchical aggregates. Aggregate 2021, 2, e95.

    Article  CAS  Google Scholar 

  29. Ding, Z.; Cen, J.; Wu, Y.; Zhong, K.; Liu, G.; Hu, J.; Liu, S. Self-Immolative nanoparticles for stimuli-triggered activation, covalent trap** and accumulation of in situ generated small molecule theranostic fragments. Giant 2020, 1, 100012.

    Article  Google Scholar 

  30. Zhou, J.; Zhang, Y.; Wang, R. Controllable loading and release of nanodrugs in polymeric vesicles. Giant 2022, 12, 100126.

    Article  CAS  Google Scholar 

  31. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gratton, S. E.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 11613–11618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, K.; Rossin, R.; Hagooly, A.; Chen, Z.; Welch, M. J.; Wooley, K. L. Folate-mediated cell uptake of shell-crosslinked spheres and cylinders. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7578–7583.

    Article  CAS  Google Scholar 

  34. Albanese, A.; Tang, P. S.; Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    Article  CAS  PubMed  Google Scholar 

  35. Won, Y. Y.; Davis, H. T.; Bates, F. S. Giant wormlike rubber micelles. Science 1999, 283, 960–963.

    Article  CAS  PubMed  Google Scholar 

  36. Dreiss, C. C. A. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956–970.

    Article  CAS  PubMed  Google Scholar 

  37. Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. 50th Anniversary perspective: functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 2017, 50, 3439–3463.

    Article  CAS  Google Scholar 

  38. Foster, J. C.; Varlas, S.; Couturaud, B.; Coe, Z.; O’Reilly, R. K. Getting into shape: reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. J. Am. Chem. Soc. 2019, 141, 2742–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, Y.; **, B.; Li, Q.; Luo, Y.; Chi, S.; Li, X. Precise supramolecular polymerization of liquid crystalline block copolymer initiated by heavy metallic salts. Chinese J. Polym. Sci. 2022, 40, 624–630.

    Article  CAS  Google Scholar 

  40. Liu, X.; Gao, L.; Wang, L.; Zhang, C.; Lin, J. Polymerization-like assembly behavior of the nanorods. Acta Polymerica Sinica (in Chinese) 2018, 1279–1286.

  41. Shi, B.; Wang, G. Application of polymerization-induced self-assembly (PISA) technology. Acta Polymerica Sinica (in Chinese) 2022, 53, 15–29.

    CAS  Google Scholar 

  42. Ou, H.; Zhang, B.; Liu, C. Bimodal polymer-grafted nanoparticles with precisely controlled structures. Acta Polymerica Sinica (in Chinese) 2022, 53, 1388–1398.

    CAS  Google Scholar 

  43. Gadt, T.; Ieong, N. S.; Cambridge, G.; Winnik, M. A.; Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 2009, 8, 144–150.

    Article  PubMed  Google Scholar 

  44. Gilroy, J. B.; Gadt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, J. M.; Richardson, R. M.; Winnik, M. A.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2010, 2, 566–570.

    Article  CAS  PubMed  Google Scholar 

  45. Hudson, Z. M.; Boott, C. E.; Robinson, M. E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 2014, 6, 893–898.

    Article  CAS  PubMed  Google Scholar 

  46. Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I._Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem. 2017, 9, 785–792.

    Article  CAS  PubMed  Google Scholar 

  47. Dankers, P. Y.; Hermans, T. M.; Baughman, T. W.; Kamikawa, Y.; Kieltyka, R. E.; Bastings, M. M.; Janssen, H. M.; Sommerdijk, N. A.; Larsen, A.; van Luyn, M. J.; Bosman, A. W.; Popa, E. R.; Fytas, G.; Meijer, E. W. Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 2012, 24, 2703–2709.

    Article  CAS  PubMed  Google Scholar 

  48. Krieg, E.; Bastings, M. M.; Besenius, P.; Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 2016, 116, 2414–2477.

    Article  CAS  PubMed  Google Scholar 

  49. Nazemi, A.; Boott, C. E.; Lunn, D. J.; Gwyther, J.; Hayward, D. W.; Richardson, R. M.; Winnik, M. A.; Manners, I. Monodisperse cylindrical micelles and block comicelles of controlled length in aqueous media. J. Am. Chem. Soc. 2016, 138, 4484–4493.

    Article  CAS  PubMed  Google Scholar 

  50. Arno, M. C.; Inam, M.; Coe, Z.; Cambridge, G.; Macdougall, L. J.; Keogh, R.; Dove, A. P.; O’Reilly, R. K. Precision epitaxy for aqueous 1D and 2D poly(ε-caprolactone) assemblies. J. Am. Chem. Soc. 2017, 139, 16980–16985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alvarez, Z.; Kolberg-Edelbrock, A. N.; Sasselli, I. R.; Ortega, J. A.; Qiu, R.; Syrgiannis, Z.; Mirau, P. A.; Chen, F.; Chin, S. M.; Weigand, S.; Kiskinis, E.; Stupp, S. I. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 2021, 374, 848–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi, Q.; Yin, H.; Song, R.; Xu, J.; Tan, J.; Zhou, X.; Cen, J.; Deng, Z.; Tong, H.; Cui, C.; Zhang, Y.; Li, X.; Zhang, Z.; Liu, S. Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification. Nat. Chem. 2022, DOI: https://doi.org/10.1038/s41557-022-01076-y.

  53. Chen, W. H.; Chen, Q. W.; Chen, Q.; Cui, C.; Duan, S.; Kang, Y.; Liu, Y.; Liu, Y.; Muhammad, W.; Shao, S.; Tang, C.; Wang, J.; Wang, L.; **ong, M. H.; Yin, L.; Zhang, K.; Zhang, Z.; Zhen, X.; Feng, J.; Gao, C.; Gu, Z.; He, C.; Ji, J.; Jiang, X.; Liu, W.; Liu, Z.; Peng, H.; Shen, Y.; Shi, L.; Sun, X.; Wang, H.; Wang, J.; **ao, H.; Xu, F. J.; Zhong, Z.; Zhang, X. Z.; Chen, X. Biomedical polymers: synthesis, properties, and applications. Sci. China Chem. 2022, 65, 1010–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aksakal, R.; Mertens, C.; Soete, M.; Badi, N.; Du Prez, F. Applications of discrete synthetic macromolecules in life and materials science: recent and future trends. Adv. Sci. 2021, 8, 2004038.

    Article  CAS  Google Scholar 

  55. Genabeek, B.; Lamers, B. A. G.; Hawker, C. J.; Meijer, E. W.; Gutekunst, W. R.; Schmidt, B. V. K. J. Properties and applications of precision oligomer materials; where organic and polymer chemistry join forces. J. Polym. Sci. 2021, 59, 373–403.

    Article  Google Scholar 

  56. Lutz, J. F.; Ouchi, M.; Liu, D. R.; Sawamoto, M. Sequence-controlled polymers. Science 2013, 341, 1238149.

    Article  PubMed  Google Scholar 

  57. Solleder, S. C.; Schneider, R. V.; Wetzel, K. S.; Boukis, A. C.; Meier, M. A. R. Recent progress in the design of monodisperse, sequence-defined macromolecules. Macromol. Rapid Commun. 2017, 38, 1600711.

    Article  Google Scholar 

  58. Babi, J.; Zhu, L.; Lin, A.; Uva, A.; El-Haddad, H.; Peloewetse, A.; Tran, H. Self-assembled free-floating nanomaterials from sequence-defined polymers. J. Polym. Sci. 2021, 59, 2378–2404.

    Article  CAS  Google Scholar 

  59. Li, Z.; Cai, B.; Yang, W.; Chen, C. L. Hierarchical nanomaterials assembled from peptoids and other sequence-defined synthetic polymers. Chem. Rev. 2021, 121, 14031–14087.

    Article  CAS  PubMed  Google Scholar 

  60. Huang, Z.; Zhao, J.; Wang, Z.; Meng, F.; Ding, K.; Pan, X.; Zhou, N.; Li, X.; Zhang, Z.; Zhu, X. Combining orthogonal chain-end deprotections and thiol-maleimide michael coupling: engineering discrete oligomers by an iterative growth strategy. Angew. Chem. Int. Ed. 2017, 56, 13612–13617.

    Article  CAS  Google Scholar 

  61. Huang, Z.; Shi, Q.; Guo, J.; Meng, F.; Zhang, Y.; Lu, Y.; Qian, Z.; Li, X.; Zhou, N.; Zhang, Z.; Zhu, X. Binary tree-inspired digital dendrimer. Nat. Commun. 2019, 10, 1918.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bousmail, D.; Chidchob, P.; Sleiman, H. F. Cyanine-mediated DNA nanofiber growth with controlled dimensionality. J. Am. Chem. Soc. 2018, 140, 9518–9530.

    Article  CAS  PubMed  Google Scholar 

  63. Sternhagen, G. L.; Gupta, S.; Zhang, Y.; John, V.; Schneider, G. J.; Zhang, D. Solution self-assemblies of sequence-defined ionic peptoid block copolymers. J. Am. Chem. Soc. 2018, 140, 4100–4109.

    Article  CAS  PubMed  Google Scholar 

  64. Yan, X. Y.; Lin, Z.; Zhang, W.; Xu, H.; Guo, Q. Y.; Liu, Y.; Luo, J.; Liu, X. Y.; Zhang, R.; Huang, J.; Liu, T.; Su, Z.; Zhang, R.; Zhang, S.; Liu, T.; Cheng, S. Z. D. Magnifying the structural components of biomembranes: a prototype for the study of the self-assembly of giant lipids. Angew. Chem. Int. Ed. 2020, 59, 5226–5234.

    Article  CAS  Google Scholar 

  65. Rizzuto, F. J.; Dore, M. D.; Rafique, M. G.; Luo, X.; Sleiman, H. F. DNA sequence and length dictate the assembly of nucleic acid block copolymers. J. Am. Chem. Soc. 2022, 144, 12272–12279.

    Article  CAS  PubMed  Google Scholar 

  66. Shi, Q.; Zhou, X.; Xu, J.; Zhang, J.; Wang, N.; Zhang, G.; Hu, J.; Liu, S. Dendritic quaternary-encoded oligourethanes for data encryption. Angew. Chem. Int. Ed. 2022, e202214695.

  67. Su, H.; Zhang, W.; Wang, H.; Wang, F.; Cui, H. Paclitaxel-promoted supramolecular polymerization of peptide conjugates. J. Am. Chem. Soc. 2019, 141, 11997–12004.

    Article  CAS  PubMed  Google Scholar 

  68. Usov, I.; Mezzenga, R. FiberApp: an open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 2015, 48, 1269–1280.

    Article  CAS  Google Scholar 

  69. Yang, B. K. C.; Puneet, P.; Ho, R. M. Reaction: amplification of macromolecular helicity through self-assembly. Giant 2020, 2, 100015.

    Article  Google Scholar 

  70. Cai, C.; Lin, J.; Zhu, X.; Gong, S.; Wang, X. S.; Wang, L. Superhelices with designed helical structures and temperature-stimulated chirality transitions. Macromolecules 2016, 49, 15–22.

    Article  CAS  Google Scholar 

  71. Hifsudheen, M.; Mishra, R. K.; Vedhanarayanan, B.; Praveen, V. K.; Ajayaghosh, A. The helix to super-helix transition in the self-assembly of π-systems: superseding of molecular chirality at hierarchical level. Angew. Chem. Int. Ed. 2017, 56, 12634–12638.

    Article  CAS  Google Scholar 

  72. Garcia, F.; Aparicio, F.; Marenchino, M.; Campos-Olivas, R.; Sanchez, L. Helical and flat structures from chiral dendronized rectangular oligo(phenylene ethynylene)s. Org. Lett. 2010, 12, 4264–4267.

    Article  CAS  PubMed  Google Scholar 

  73. Ouyang, G.; Liu, M. Self-assembly of chiral supra-amphiphiles. Mat. Chem. Front. 2020, 4, 155–167.

    Article  CAS  Google Scholar 

  74. Petit, B. E.; Lotz, B.; Lutz, J. F. About the crystallization of abiotic coded matter. ACS Macro Lett. 2019, 8, 779–782.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2020YFA0710700) and the National Natural Science Foundation of China (Nos. 52021002, 52233009, U19A2094, 52073270 and 51973071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ang-Long Hu or Shi-Yong Liu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, QQ., Zhou, X., Xu, J. et al. Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media. Chin J Polym Sci 41, 768–777 (2023). https://doi.org/10.1007/s10118-023-2946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2946-y

Keywords

Navigation