Log in

Recent Research Progress of n-Type Conjugated Polymer Acceptors and All-Polymer Solar Cells

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The active layer of all polymer solar cells (all-PSCs) is composed of a blend of a p-type conjugated polymer (p-CP) as donor and an n-type conjugated polymer (n-CP) as acceptor. All-PSCs possess the advantages of light weight, thin active layer, mechanical flexibility, low cost solution processing and high stability, but the power conversion efficiency (PCE) of the all-PSCs was limited by the poor photovoltaic performance of the n-CP acceptors before 2016. Since the report of the strategy of polymerized small molecule acceptors (PSMAs) in 2017, the photovoltaic performance of the PSMA-based n-CPs improved rapidly, benefitted from the development of the A-DA’D-A type small molecule acceptors (SMAs). PCE of the all-PSCs based on the PSMA acceptors reached 17%–18% recently. In this review article, we will introduce the development history of the n-CPs, especially the recent research progress of the PSMAs. Particularly, the structure-property relationship of the PSMAs is introduced and discussed. Finally, current challenges and prospects of the n-CP acceptors are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, F.; Huang, Y.; Li, Y.; Li, Y. F. Large-area flexible organic solar cells. npj Flex. Electron. 2021, 5, 30.

    Article  Google Scholar 

  2. Li, Y.; Xu, G.; Cui, C.; Li, Y. F. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.

    Article  Google Scholar 

  3. Liu, Y.; Liu, B.; Ma, C.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z; Bo, Z. Recent progress in organic solar cells (Part II Device engineering). Sci. China Chem. 2022, 65, 1457–1497.

    Article  CAS  Google Scholar 

  4. Li, Y. F. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, G.; Hu, X.; Liao, X.; Chen, Y. Bending-stability interfacial layer as dual electron transport layer for flexible organic photovoltaics. Chinese J. Polym. Sci. 2021, 39, 1441–1448.

    Article  CAS  Google Scholar 

  6. Wang, T.; Sun, R.; Yang, X. R.; Wu, Y.; Wang, W.; Li, Q.; Zhang, C. F.; Min, J. A near-infrared polymer acceptor enables over 15% efficiency for all-polymer solar cells. Chinese J. Polym. Sci. 2022, 40, 877–888.

    Article  CAS  Google Scholar 

  7. Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  8. Yu, G.; Heeger, A. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 1995, 78, 4510–4515.

    Article  CAS  Google Scholar 

  9. He, Y.; Li, Y. F. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983.

    Article  CAS  PubMed  Google Scholar 

  10. Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. A-DA’D-A non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 2020, 63, 1352–1366.

    Article  CAS  Google Scholar 

  11. Zhang, M.; Bai, Y.; Sun, C.; Xue, L.; Wang, H.; Zhang, Z. Perylene-diimide derived organic photovoltaic materials. Sci. China Chem. 2022, 65, 462–485.

    Article  CAS  Google Scholar 

  12. Shi, Y.; Wang, Y.; Guo, X. Recent progress of imide-functionalized N-type polymer semiconductors. Acta Polymerica Sinica (in Chinese) 2019, 50, 873–889.

    CAS  Google Scholar 

  13. Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    Article  CAS  PubMed  Google Scholar 

  14. Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 2016, 138, 2973–2976.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Z.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. F. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew.Chem. Int. Ed. 2017, 56, 13503–13507.

    Article  CAS  Google Scholar 

  16. Zhang, Z.; Li, Y. F. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew.Chem. Int. Ed. 2021, 60, 4422–4433.

    Article  CAS  Google Scholar 

  17. Sun, G.; Jiang, X.; Li, X. J; Meng, L.; Zhang, J.; Qin, S.; Kong, X.; Li, J.; **n, J.; Ma, W.; Li, Y. F. High performance polymerized small molecule acceptor by synergistic optimization on pi-bridge linker and side chain. Nat. Commun. 2022, 13, 5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J.; Cui, Y.; Xu, Y.; **an, K.; Bi, P.; Chen, Z.; Zhou, K.; Ma, L.; Zhang, T.; Yang, Y.; Zu, Y.; Yao, H.; Hao, X.; Ye, L.; Hou, J. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Adv. Mater. 2022, 34, 2205009.

    Article  CAS  Google Scholar 

  19. Zhan, X.; Tan, Z. A.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 2007, 129, 7246–7247.

    Article  CAS  PubMed  Google Scholar 

  20. Guo, X.; Watson, M. Conjugated polymers from naphthalene bisimide. Org. Lett. 2008, 10, 5333–5336.

    Article  CAS  PubMed  Google Scholar 

  21. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686.

    Article  CAS  PubMed  Google Scholar 

  22. Kang, H.; Uddin, M.; Lee, C.; Kim, K.; Thanh L.; Lee, W.; Li, Y.; Wang, C.; Woo, H.; Kim, B. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. J. Am. Chem. Soc. 2015, 137, 2359–2365.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z.; Bai, Y.; Li, Y. F. Benzotriazole based 2D-conjugated polymer donors for high performance polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 1–13.

    Article  Google Scholar 

  24. Gao, L.; Zhang, Z.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. Allpolymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884–1890.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Z.; Zhong, W.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 2019, 64, 103931.

    Article  CAS  Google Scholar 

  26. Li, W.; Roelofs, W.; Turbiez, M.; Wienk, M.; Janssen, R. Polymer solar cells with diketopyrrolopyrrole conjugated polymers as the electron donor and electron acceptor. Adv. Mater. 2014, 26, 3304–3309.

    Article  CAS  PubMed  Google Scholar 

  27. Sun, H.; Tang, Y.; Koh, C.; Ling, S.; Wang, R.; Yang, K.; Yu, J.; Shi, Y.; Wang, Y.; Woo, H.; Guo, X. High-performance all-polymer solar cells enabled by an N-type polymer based on a fluorinated imide-functionalized arene. Adv. Mater. 2019, 31, 1807220.

    Article  Google Scholar 

  28. Zhao, R.; Liu, J.; Wang, L. Polymer acceptors containing B←N units for organic photovoltaics. Acc. Chem. Res. 2020, 53, 1557–1567.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, Y. Z.; Wang, N.; Wang, Y. H.; Miao, J. H.; Liu, J.; Wang, L. X. 15% Efficiency all-polymer solar cells based on a polymer acceptor containing B←N unit. Chinese J. Polym. Sci. 2022, 40, 989–995.

    Article  CAS  Google Scholar 

  30. Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z.; Liu, F.; Zhang, M.; Russell, T.; Li, Y. F. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 2019, 62, 845–850.

    Article  CAS  Google Scholar 

  31. Yao, H.; Ma, L.; Yu, H.; Yu, J.; Chow, P.; Xue, W.; Zou, X.; Chen, Y.; Liang, J.; Arunagiri, L.; Gao, F.; Sun, H.; Zhang, G.; Ma, W.; Yan, H. All-polymer solar cells with over 12% efficiency and a small voltage loss enabled by a polymer acceptor based on an extended fused ring core. Adv. Energy Mater. 2020, 10, 2001408.

    Article  CAS  Google Scholar 

  32. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  33. Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14.4% Efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718.

    Article  CAS  Google Scholar 

  34. Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 2020, 4, 1070–1086.

    Article  CAS  Google Scholar 

  35. Fan, Q.; Fu, H.; Wu, Q.; Wu, Z.; Lin, F.; Zhu, Z.; Min, J.; Woo, H.; Jen, A. Multi-selenophene-containing narrow bandgap polymer acceptors for all-polymer solar cells with over 15% efficiency and high reproducibility. Angew. Chem. Int. Ed. 2021, 60, 15935–15943.

    Article  CAS  Google Scholar 

  36. Fu, H.; Fan, Q.; Gao, W.; Oh, J.; Li, Y.; Lin, F.; Qi, F.; Yang, C.; Marks, T.; Jen, A. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. Sci. China Chem. 2022, 65, 309–317.

    Article  CAS  Google Scholar 

  37. Fu, H.; Li, Y.; Yu, J.; Wu, Z.; Fan, Q.; Lin, F.; Woo, H.; Gao, F.; Zhu, Z.; Jen, A. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J. Am. Chem. Soc. 2021, 143, 2665–2670.

    Article  CAS  PubMed  Google Scholar 

  38. Du, J.; Hu, K.; Zhang, J.; Meng, L.; Yue, J.; Angunawela, I.; Yan, H.; Qin, S.; Kong, X.; Zhang, Z.; Guan, B.; Ade, H.; Li, Y. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat. Commun. 2021, 12, 5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, Y.; Song, J.; Dong, Y.; **, H.; **n, J.; Wang, S.; Ca, Y.; Jiang, L.; Ma, W.; Tang, Z.; Sun, Y. Polymerized small molecular acceptor with branched side chains for all polymer solar cells with efficiency over 16.7%. Adv. Mater. 2022, 34, 2110155.

    Article  CAS  Google Scholar 

  40. Luo, Z.; Liu, T.; Ma, R.; **ao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; Zhong, C.; Zou, Y.; Guo, X.; Lu, X.; Chen, H.; Yan, H.; Yang, C. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for allpolymer solar cells with efficiencies over 15%. Adv. Mater. 2020, 32, 2005942.

    Article  CAS  Google Scholar 

  41. Peng, F.; An, K.; Zhong, W.; Li, Z.; Ying, L.; Li, N.; Huang, Z.; Zhu, C.; Fan, B.; Huang, F.; Cao, Y. A universal fluorinated polymer acceptor enables all-polymer solar cells with >15% efficiency. ACS Energy Lett. 2020, 5, 3702–3707.

    Article  CAS  Google Scholar 

  42. Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv. Funct. Mater. 2021, 31, 2100791.

    Article  CAS  Google Scholar 

  43. Li, Y.; Jia, Z.; Zhang, Q.; Wu, Z.; Qin, H.; Yang, J.; Wen, S.; Woo, H.; Ma, W.; Yang, R.; Yuan, J. Toward efficient all-polymer solar cells via halogenation on polymer acceptors. ACS Appl. Mater. Interfaces 2020, 12, 33028–33038.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, H.; Chen, H.; **e, W.; Lai, H.; Zhao, T.; Zhu, Y.; Chen, L.; Ke, C.; Zheng, N.; He, F. Configurational isomers induced significant difference in all-polymer solar cells. Adv. Funct. Mater. 2021, 31, 2100877.

    Article  CAS  Google Scholar 

  45. Yu, H.; Wang, Y.; Kim, H.; Wu, X.; Li, Y.; Yao, Z.; Pan, M.; Zou, X.; Zhang, J.; Chen, S.; Zhao, D.; Huang, F.; Lu, X.; Zhu, Z.; Yan, H. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance allpolymer solar cells with over 17% efficiency. Adv. Mater. 2022, 34, 2200361.

    Article  CAS  Google Scholar 

  46. Liu, F.; Sun, R.; Wang, C. Y.; Zhou, L.; Su, W. L.; Yue, Q. H.; Sun, S.; Liu, W. Y.; Fan, H. J.; Zhang, W. K.; Guo, Y. L.; Feng, L. H.; Zhu, X. Z. Planarized polymer acceptor featuring high electron mobility for efficient all-polymer solar cells. Chinese J. Polym. Sci. 2022, 40, 968–978.

    Article  CAS  Google Scholar 

  47. Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Lai, J.; Zou, Y.; Ade, H.; Yan, H. Efficient allpolymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 2019, 4, 417–422.

    Article  CAS  Google Scholar 

  48. Fan, Q.; An, Q.; Lin, Y.; **a, Y.; Li, Q.; Zhang, M.; Su, W.; Peng, W.; Zhang, C.; Liu, F.; Hou, L.; Zhu, W.; Yu, D.; **ao, M.; Moons, E.; Zhang, F.; Anthopoulos, T.; Inganas, O.; Wang, E. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy Environ. Sci. 2020, 13, 5017–5027.

    Article  CAS  Google Scholar 

  49. Sun, H.; Yu, H.; Shi, Y.; Yu, J.; Peng, Z.; Zhang, X.; Liu, B.; Wang, J.; Singh, R.; Lee, J.; Li, Y.; Wei, Z.; Liao, Q.; Kan, Z.; Ye, L.; Yan, H.; Gao, F.; Guo, X. A narrow-bandgap N-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv. Mater. 2020, 32, 2004183.

    Article  CAS  Google Scholar 

  50. Zhou, L.; **a, X.; Meng, L.; Zhang, J.; Lu, X.; Li, Y. Introducing electron-withdrawing linking units and thiophene π-bridges into polymerized small molecule acceptors for high-efficiency all-polymer solar cells. Chem. Mater. 2021, 33, 8212–8222.

    Article  CAS  Google Scholar 

  51. Fan, Q.; Ma, R.; Liu, T.; Yu, J.; **ao, Y.; Su, W.; Cai, G.; Li, Y.; Peng, W.; Guo, T.; Luo, Z.; Sun, H.; Hou, L.; Zhu, W.; Lu, X.; Gao, F.; Moons, E.; Yu, D.; Yan, H.; Wang, E. High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Sci. China Chem. 2021, 64, 1380–1388.

    Article  CAS  Google Scholar 

  52. Liu, W.; Yuan, J.; Zhu, C.; Wei, Q.; Liang, S.; Zhang, H.; Zheng, G.; Hu, Y.; Meng, L.; Gao, F.; Li, Y.; Zou, Y. A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%. Sci. China Chem. 2022, 65, 1374–1382.

    Article  CAS  Google Scholar 

  53. Benten, H.; Nishida, T.; Mori, D.; Xu, H.; Ohkita, H.; Ito, S. High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths. Energy Environ. Sci. 2016, 9, 135–140.

    Article  CAS  Google Scholar 

  54. Su, W.; Fan, Q.; Guo, X.; Guo, B.; Li, W.; Zhang, Y.; Zhang, M.; Li, Y. Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material. J. Mater. Chem. A 2016, 4, 14752–14760.

    Article  CAS  Google Scholar 

  55. Liu, J.; Tang, B.; Liang, Q.; Han, Y.; **e, Z.; Liu, J. Dual Förster resonance energy transfer and morphology control to boost the power conversion efficiency of all-polymer OPVs. RSC Adv. 2017, 7, 13289–13298.

    Article  CAS  Google Scholar 

  56. Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Genene, Z.; Ma, W.; Mammo, W.; Yartsev, A.; Andersson, M.; Janssen, R.; Wang, E. 9.0% Power conversion efficiency from ternary all-polymer solar cells. Energy Environ. Sci. 2017, 10, 2212–2221.

    Article  CAS  Google Scholar 

  57. Li, Z.; Fan, B.; He, B.; Ying, L.; Zhong, W.; Liu, F.; Huang, F.; Cao, Y. Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Sci. China Chem. 2018, 61, 427–436.

    Article  Google Scholar 

  58. Li, Z.; Ying, L.; **e, R.; Zhu, P.; Li, N.; Zhong, W.; Huang, F.; Cao, Y. Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy 2018, 51, 434–441.

    Article  CAS  Google Scholar 

  59. Chen, H.; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.; He, F. A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Sci. China Chem. 2019, 62, 238–244.

    Article  CAS  Google Scholar 

  60. Liu, S.; Chen, D.; Zhou, W.; Yu, Z.; Chen, L.; Liu, F.; Chen, Y. Vertical distribution to optimize active layer morphology for efficient all-polymer solar cells by J71 as a compatibilizer. Macromolecules 2019, 52, 4359–4369.

    Article  CAS  Google Scholar 

  61. Zhang, Q.; Chen, Z.; Ma, W.; **e, Z.; Liu, J.; Yu, X.; Han, Y. Efficient nonhalogenated solvent-processed ternary all-polymer solar cells with a favorable morphology enabled by two well-compatible donors. ACS Appl. Mater. Interfaces 2019, 11, 32200–32208.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, K.; Zhou, X.; Xu, X.; Musumeci, C.; Wang, C.; Xu, W.; Meng, X.; Ma, W.; Inganas, O. π-π Stacking distance and phase separation controlled efficiency in stable all-polymer solar cells. Polymers 2019, 11, 1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, X.; Zhang, C.; Pang, S.; Li, N.; Brabec, C.; Duan, C.; Huang, F.; Cao, Y. Ternary all-polymer solar cells with 8.5% power conversion efficiency and excellent thermal stability. Front. Chem. 2020, 8, 302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, K.; Dong, S.; Chen, X.; Zhou, P.; Zhang, K.; Huang, J.; Wang, M. Improving the all-polymer solar cell performance by adding a narrow bandgap polymer as the second donor. RSC Adv. 2020, 10, 38344–38350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, X.; Feng, K.; Yu, L.; Yan, H.; Li, R.; Peng, Q. Highly efficient all-polymer solar cells enabled by P-do** of the polymer donor. ACS Energy Lett. 2020, 5, 2434–2443.

    Article  CAS  Google Scholar 

  66. Hu, K.; Du, J.; Sun, C.; Zhu, C.; Zhang, J.; Yao, J.; Zhang, Z.; Wan, Y.; Zhang, Z.; Meng, L.; Li, Y. F. Ternary all-polymer solar cells with two synergetic donors enable efficiency over 14.5%. Energy Fuel. 2021, 35, 19045–19054.

    Article  CAS  Google Scholar 

  67. Zhang, W.; Sun, C.; Angunawela, I.; Meng, L.; Qin, S.; Zhou, L.; Li, S.; Zhuo, H.; Yang, G.; Zhang, Z.; Ade, H.; Li, Y. 16.52% Efficiency all-polymer solar cells with high tolerance of the photoactive layer thickness. Adv. Mater. 2022, 34, 2108749.

    Article  CAS  Google Scholar 

  68. An, K.; Peng, F.; Zhong, W.; Deng, W.; Zhang, D.; Ying, L.; Wu, H.; Huang, F.; Cao, Y. Improving photovoltaic parameters of all-polymer solar cells through integrating two polymeric donors. Sci. China Chem. 2021, 64, 2010–2016.

    Article  CAS  Google Scholar 

  69. Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; **ao, Y.; Dela, T.; Li, Y.; Zou, X.; **ng, Z.; Luo, Z.; Wong, K.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.

    Article  CAS  Google Scholar 

  70. Liao, C.; Gong, Y.; Xu, X.; Yu, L.; Li, R.; Peng, Q. Cost-efficiency balanced polymer acceptors based on lowly fused dithienopyrrolo[3, 2b]benzothiadiazole for 16.04% efficiency all-polymer solar cells. Chem. Eng. J. 2022, 435, 134862.

    Article  CAS  Google Scholar 

  71. Liu, T.; Yang, T.; Ma, R.; Zhan, L.; Luo, Z.; Zhang, G.; Li, Y.; Gao, K.; **ao, Y.; Yu, J.; Zou, X.; Sun, H.; Zhang, M.; Dela, T.; **ng, Z.; Liu, H.; Li, X.; Li, G.; Huang, J.; Duan, C.; Wong, K.; Lu, X.; Guo, X.; Gao, F.; Chen, H.; Huang, F.; Li, Y.; Li, Y.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule 2021, 5, 914–930.

    Article  CAS  Google Scholar 

  72. Sun, R.; Wang, W.; Yu, H.; Chen, Z.; **a, X.; Shen, H.; Guo, J.; Shi, M.; Zheng, Y.; Wu, Y.; Yang, W.; Wang, T.; Wu, Q.; Yang, Y.; Lu, X.; **a, J.; Brabec, C.; Yan, H.; Li, Y.; Min, J. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule 2021, 5, 1548–1565.

    Article  CAS  Google Scholar 

  73. Hu, K.; Du, J.; Zhu, C.; Lai, W.; Li, J.; **n, J.; Ma, W.; Zhang, Z.; Zhang, J.; Meng, L.; Li, Y. F. Chlorinated polymerized small molecule acceptor enabling ternary all-polymer solar cells with over 16.6% efficiency. Sci. China Chem. 2022, 65, 954–963.

    Article  CAS  Google Scholar 

  74. **an, K.; Zhou, K.; Li, M.; Liu, J.; Zhang, Y.; Zhang, T.; Cui, Y.; Zhao, W.; Yang, C.; Hou, J.; Geng, Y.; Ye, L. Simultaneous optimization of efficiency, stretchability, and stability in all-polymer solar cells via aggregation control. Chin. J. Chem. 2023, 41, 159–166.

    Article  CAS  Google Scholar 

  75. Yang, X.; Sun, R.; Wang, Y.; Chen, M.; **a, X.; Lu, X.; Lu, G.; Min, J. Ternary all-polymer solar cells with efficiency up to 18.14% employing a two-step sequential deposition. Adv. Mater. 2022, 2209350.

    Google Scholar 

  76. Cai, Y.; **e, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M.; Qiao, J.; Li, Y.; Song, J.; Hao, X.; Woo, H.; Tang, Z.; Zhou, Y.; Zhang, C.; Huang, H.; Sun, Y. Improved molecular ordering in a ternary blend enables all-polymer solar cells over 18% efficiency. Adv. Mater. 2022, 2208165.

    Google Scholar 

  77. Yuan, J.; Gu, J.; Shi, G.; Sun, J.; Wang, H.; Ma, W. High efficiency all-polymer tandem solar cells. Sci. Rep. 2016, 6, 26459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yuan, J.; Ford, M.; Xu, Y.; Zhang, Y.; Bazan, G.; Ma, W. Improved tandem all-polymer solar cells performance by using spectrally matched subcells. Adv. Energy Mater. 2018, 8, 1703291.

    Article  Google Scholar 

  79. Zhang, K.; **a, R.; Fan, B.; Liu, X.; Wang, Z.; Dong, S.; Yip, H.; Ying, L.; Huang, F.; Cao, Y. 11.2% All-polymer tandem solar cells with simultaneously improved efficiency and stability. Adv. Mater. 2018, 30, 1803166.

    Article  Google Scholar 

  80. Ma, Q.; Jia, Z.; Meng, L.; Yang, H.; Zhang, J.; Lai, W.; Guo, J.; Jiang, X.; Cui, C.; Li, Y. F. 17.87% Efficiency all-polymer tandem solar cell enabled by complementary absorbing polymer acceptors. Adv. Funct. Mater. 2023, 33, 2210733.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 61904181, 51820105003, 52173188 and 21734008) and the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao-Jun Li or Yong-Fang Li.

Additional information

Notes

The authors declare no competing financial interest.

Biographies

**ao-Jun Li received his Ph.D. degree from Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2019 under the supervision of Prof. Yongfang Li. He did postdoctoral research at the Hong Kong University of Science and Technology with Prof. Sir He Yan from 2019 to 2021. Then he joined the Yongfang Li’s group in CAS Key Laboratory of Organic Solids, ICCAS, in 2021 and was appointed as an Associate Professor. His main research interests focus on the synthesis and application of organic photovoltaic materials.

Yong-Fang Li is a professor in Institute of Chemistry, Chinese Academy of Sciences (ICCAS) and in Soochow University. He received his Ph.D. degree from department of Chemistry, Fudan University in 1986, then did his postdoctoral research at ICCAS from 1986 to 1988. He became a staff in 1988 and promoted to professor in 1993 in ICCAS. He was elected as a member of Chinese Academy of Sciences in 2013. His present research field is photovoltaic materials and devices for polymer solar cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XJ., Sun, GP., Gong, YF. et al. Recent Research Progress of n-Type Conjugated Polymer Acceptors and All-Polymer Solar Cells. Chin J Polym Sci 41, 640–651 (2023). https://doi.org/10.1007/s10118-023-2944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2944-0

Keywords

Navigation