Log in

Diketopyrrolopyrrole-based Conjugated Polymers as Representative Semiconductors for High-Performance Organic Thin-Film Transistors and Circuits

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Since the first report of diketopyrrolopyrrole (DPP)-based conjugated polymers for organic thin-film transistors (OTFTs), these polymers have attracted great attention as representative semiconductors in high-performance OTFTs. Through unremitting efforts in molecular-structure regulation and device optimization, significant mobilities exceeding 10 cm2·V−1·s−1 have been achieved in OTFTs, greatly promoting the applied development of organic circuits. In this review, we summarize our progress in molecular design, synthesis and solution-processing of DPP-based conjugated polymers for OTFT devices and circuits, focusing on the roles of design strategies, synthesis methods and processing techniques. Furthermore, the remaining issues and future outlook in the field are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Y.; Zhao, Y.; Liu, Y. Toward efficient charge transport of polymer-based organic field-effect transistors: molecular design, processing, and functional utilization. Acc. Mater. Res. 2021, 2, 1047–1058.

    Article  CAS  Google Scholar 

  2. Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 2018, 4, 2748–2785.

    Article  CAS  Google Scholar 

  3. Yan, Y.; Zhao, Y.; Liu, Y. Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 2022, 60, 311–327.

    Article  CAS  Google Scholar 

  4. Pei, K.; Chen, M.; Zhou, Z.; Li, H.; Chan, P. K. L. Overestimation of carrier mobility in organic thin film transistors due to unaccounted fringe currents. ACS Appl. Electron. Mater. 2019, 1, 379–388.

    Article  CAS  Google Scholar 

  5. Snyder, G. J.; Snyder, A. H.; Wood, M.; Gurunathan, R.; Snyder, B. H.; Niu, C. Weighted mobility. Adv. Mater. 2020, 32, 2001537.

    Article  CAS  Google Scholar 

  6. Fratini, S.; Ciuchi, S.; Mayou, D.; de Laissardière, G. T.; Troisi, A. A map of high-mobility molecular semiconductors. Nat. Mater. 2017, 16, 998–1002.

    Article  CAS  PubMed  Google Scholar 

  7. Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Thienoacene-based organic semiconductors. Adv. Mater. 2011, 23, 4347–4370.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Z.; Peng, B.; Ji, X.; Pei, K.; Chan, P. K. L. Marangoni-effect-assisted bar-coating method for high-quality organic crystals with compressive and tensile strains. Adv. Funct. Mater. 2017, 27, 1703443.

    Article  Google Scholar 

  9. Wang, Y.; Hasegawa, T.; Matsumoto, H.; Michinobu, T. Significant improvement of unipolar N-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding. J. Am. Chem. Soc. 2019, 141, 3566–3575.

    Article  CAS  PubMed  Google Scholar 

  10. Wadsworth, A.; Chen, H.; Thorley, K. J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T. D.; Sirringhaus, H.; McCulloch, I. Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors. J. Am. Chem. Soc. 2020, 142, 652–664.

    Article  CAS  PubMed  Google Scholar 

  11. Gao, Y.; Deng, Y.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo. Adv. Mater. 2017, 29, 1606217.

    Article  Google Scholar 

  12. Xu, L.; Zhao, Z.; **ao, M.; Yang, J.; **ao, J.; Yi, Z.; Wang, S.; Liu, Y. π-Extended isoindigo-based derivative: a promising electron-deficient building block for polymer semiconductors. ACS Appl. Mater. Interfaces 2017, 9, 40549–40555.

    Article  CAS  PubMed  Google Scholar 

  13. Yan, X.; **ong, M.; Li, J. T.; Zhang, S.; Ahmad, Z.; Lu, Y.; Wang, Z. Y.; Yao, Z. F.; Wang, J. Y.; Gu, X.; Lei, T. Pyrazine-flanked diketopyrrolopyrrole (DPP): a new polymer building block for high-performance n-type organic thermoelectrics. J. Am. Chem. Soc. 2019, 141, 20215–20221.

    Article  CAS  PubMed  Google Scholar 

  14. Yan, X.; **ong, M.; Deng, X. Y.; Liu, K. K.; Li, J. T.; Wang, X. Q.; Zhang, S.; Prine, N.; Zhang, Z.; Huang, W.; Wang, Y.; Wang, J. Y.; Gu, X.; So, S. K.; Zhu, J.; Lei, T. Approaching disorder-tolerant semiconducting Polymers. Nat. Commun. 2021, 12, 5723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ** of polymeric semiconductors through controlling the dynamics of solution-state polymer aggregates. Angew. Chem. 2021, 133, 8270–8278.

    Article  Google Scholar 

  16. Feng, K.; Guo, H.; Sun, H.; Guo, X. N-type organic and polymeric semiconductors based on bithiophene imide derivatives. Acc. Chem. Res. 2021, 54, 3804–3817.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, X. X.; Li, J. T.; Fang, Y. H.; Deng, X. Y.; Wang, X. Q.; Liu, G.; Wang, Y.; Gu, X.; Jiang, S. D.; Lei, T. High-mobility semiconducting polymers with different spin ground states. Nat. Commun. 2022, 13, 2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, Z.; Lee, M. J.; Shahid Ashraf, R.; Gu, Y.; Albert-Seifried, S.; Meedom Nielsen, M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.; Sirringhaus, H. High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. Adv. Mater. 2012, 24, 647–652.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J. S.; Son, S. K.; Song, S.; Kim, H.; Lee, D. R.; Kim, K.; Ko, M. J.; Choi, D. H.; Kim, B.; Cho, J. H. Importance of solubilizing group and backbone planarity in low band gap polymers for high performance ambipolar field-effect transistors. Chem. Mater. 2012, 24, 1316–1323.

    Article  CAS  Google Scholar 

  20. Yi, Z.; Wang, S.; Liu, Y. Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 2015, 27, 3589–3606.

    Article  CAS  PubMed  Google Scholar 

  21. Ran, Y.; Guo, Y.; Liu, Y. Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors. Mater. Horiz. 2020, 7, 1955–1970.

    Article  CAS  Google Scholar 

  22. Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C. A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.; Ong, B. S. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2012, 2, 754–763.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grozema, F. C.; van Duijnen, P. Th.; Berlin, Y. A.; Ratner, M. A.; Siebbeles, L. D. A. Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J. Phys. Chem. B 2002, 106, 7791–7795.

    Article  CAS  Google Scholar 

  24. Yi, Z.; Jiang, Y.; Xu, L.; Zhong, C.; Yang, J.; Wang, Q.; **ao, J.; Liao, X.; Wang, S.; Guo, Y.; Hu, W.; Liu, Y. Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters. Adv. Mater. 2018, 30, 1801951.

    Article  Google Scholar 

  25. Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Record high electron mobility of 6.3 cm2V−1s−1 achieved for polymer semiconductors using a new building block. Adv. Mater. 2014, 26, 2636–2642.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, M. S.; Lee, O. P.; Niskala, J. R.; Yiu, A. T.; Tassone, C. J.; Schmidt, K.; Beaujuge, P. M.; Onishi, S. S.; Toney, M. F.; Zettl, A.; Fréchet, J. M. J. Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 2013, 135, 19229–19236.

    Article  CAS  PubMed  Google Scholar 

  27. Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. A BDOPV-based donor-acceptor polymer for high-performance n-type and oxygen-doped ambipolar field-effect transistors. Adv. Mater. 2013, 25, 6589–6593.

    Article  CAS  PubMed  Google Scholar 

  28. Sirringhaus, H. 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo, X.; Facchetti, A.; Marks, T. J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 2014, 114, 8943–9021.

    Article  CAS  PubMed  Google Scholar 

  30. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. a. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688.

    Article  CAS  Google Scholar 

  31. McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006, 5, 328–333.

    Article  CAS  PubMed  Google Scholar 

  32. Yi, Z.; Sun, X.; Zhao, Y.; Guo, Y.; Chen, X.; Qin, J.; Yu, G.; Liu, Y. Diketopyrrolopyrrole-based π-conjugated copolymer containing β-unsubstituted quintetthiophene unit: a promising material exhibiting high hole-mobility for organic thin-film transistors. Chem. Mater. 2012, 24, 4350–4356.

    Article  CAS  Google Scholar 

  33. Yi, Z.; Ma, L.; Chen, B.; Chen, D.; Chen, X.; Qin, J.; Zhan, X.; Liu, Y.; Ong, W. J.; Li, J. Effect of the longer β-unsubstituted oliogothiophene unit (6T and 7T) on the organic thin-film transistor performances of diketopyrrolopyrrole-oliogothiophene copolymers. Chem. Mater. 2013, 25, 4290–4296.

    Article  CAS  Google Scholar 

  34. Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24, 4618–4622.

    Article  CAS  PubMed  Google Scholar 

  35. Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc. 2007, 129, 4112–4113.

    Article  CAS  PubMed  Google Scholar 

  36. Sonar, P.; Singh, S. P.; Li, Y.; Soh, M. S.; Dodabalapur, A. A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv. Mater. 2010, 22, 5409–5413.

    Article  CAS  PubMed  Google Scholar 

  37. Yamashita, Y. Development of high-performance n-type organic field-effect transistors based on nitrogen heterocycles. Chem. Lett. 2009, 38, 870–875.

    Article  CAS  Google Scholar 

  38. Li, P.; Wang, H.; Ma, L.; Xu, L.; **ao, F.; Yi, Z.; Liu, Y.; Wang, S. An isoindigo-bithiazole-based acceptor-acceptor copolymer for balanced ambipolar organic thin-film transistors. Sci. China Chem. 2016, 59, 679–683.

    Article  CAS  Google Scholar 

  39. Cheng, C.; Yu, C.; Guo, Y.; Chen, H.; Fang, Y.; Yu, G.; Liu, Y. A diketopyrrolopyrrole—thiazolothiazole copolymer for high performance organic field-effect transistors. Chem. Commun. 2013, 49, 1998–2000.

    Article  CAS  Google Scholar 

  40. Li, P.; Xu, L.; Shen, H.; Duan, X.; Zhang, J.; Wei, Z.; Yi, Z.; Di, C.; Wang, S. D—A1—D—A2 copolymer based on pyridine-capped diketopyrrolopyrrole with fluorinated benzothiadiazole for high-performance ambipolar organic thin-film transistors. ACS Appl. Mater. Interfaces 2016, 8, 8620–8626.

    Article  CAS  PubMed  Google Scholar 

  41. Yang, J.; Wang, H.; Chen, J.; Huang, J.; Jiang, Y.; Zhang, J.; Shi, L.; Sun, Y.; Wei, Z.; Yu, G.; Guo, Y.; Wang, S.; Liu, Y. Bisdiketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors. Adv. Mater. 2017, 29, 1606162.

    Article  Google Scholar 

  42. Shen, T.; Li, W.; Zhao, Y.; Liu, Y.; Wang, Y. An all-C—H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers. Matter 2022, 5, 1953–1968.

    Article  CAS  Google Scholar 

  43. Babel, A.; Jenekhe, S. A. Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s. Synth. Metals 2005, 148, 169–173.

    Article  CAS  Google Scholar 

  44. Yi, Z.; Ma, L.; Li, P.; Xu, L.; Zhan, X.; Qin, J.; Chen, X.; Liu, Y.; Wang, S. Enhancing the organic thin-film transistor performance of diketopyrrolopyrrole—benzodithiophene copolymers via the modification of both conjugated backbone and side chain. Polym. Chem. 2015, 6, 5369–5375.

    Article  CAS  Google Scholar 

  45. Zhou, D.; Doumon, Y. N.; Abdu-Aguye, M.; Bartesaghi, D.; Loi, A. M.; Koster, L. J. A.; Chiechi, C. R.; Hummelen, C. J. High-quality conjugated polymers via one-pot Suzuki-Miyaura homopolymerization. RSC Adv. 2017, 7, 27762–27769.

    Article  CAS  Google Scholar 

  46. Murage, J.; Eddy, J. W.; Zimbalist, J. R.; McIntyre, T. B.; Wagner, Z. R.; Goodson, F. E. Effect of reaction parameters on the molecular weights of polymers formed in a suzuki polycondensation. Macromolecules 2008, 41, 7330–7338.

    Article  CAS  Google Scholar 

  47. Carrillo, J. A.; Turner, M. L.; Ingleson, M. J. A general protocol for the polycondensation of thienyl N-methyliminodiacetic acid boronate esters to form high molecular weight copolymers. J. Am. Chem. Soc. 2016, 138, 13361–13368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoch, M. Organotin compounds in the environment—an overview. Appl. Geochem. 2001, 16, 719–743.

    Article  CAS  Google Scholar 

  49. Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa, F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J. Am. Chem. Soc. 2010, 132, 11420–11421.

    Article  CAS  PubMed  Google Scholar 

  50. Ponder Jr, J. F.; Chen, H.; Luci, A. M. T.; Moro, S.; Turano, M.; Hobson, A. L.; Collier, G. S.; Perdigão, L. M. A.; Moser, M.; Zhang, W.; Costantini, G.; Reynolds, J. R.; McCulloch, I. Low-defect, high molecular weight indacenodithiophene (IDT) polymers via a C—H activation: evaluation of a simpler and greener approach to organic electronic materials. ACS Mater. Lett. 2021, 3, 1503–1512.

    Article  Google Scholar 

  51. Bura, T.; Beaupré, S.; Légaré, M. A.; Quinn, J.; Rochette, E.; Terence Blaskovits, J.; Fontaine, F. G.; Pron, A.; Li, Y.; Leclerc, M. Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chem. Sci. 2017, 8, 3913–3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yi, Z.; Yan, Y.; Wang, H.; Li, W.; Liu, K.; Zhao, Y.; Gu, G.; Liu, Y. Chain-extending polymerization for significant improvement in organic thin-film transistor performance. ACS Appl. Mater. Interfaces 2022, 14, 36918–36926.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, F.; Di, C.; Berdunov, N.; Hu, Y.; Hu, Y.; Gao, X.; Meng, Q.; Sirringhaus, H.; Zhu, D. Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating. Adv. Mater. 2013, 25, 1401–1407.

    Article  CAS  PubMed  Google Scholar 

  54. Luo, C.; Kyaw, A. K. K.; Perez, L. A.; Patel, S.; Wang, M.; Grimm, B.; Bazan, G. C.; Kramer, E. J.; Heeger, A. J. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 2014, 14, 2764–2771.

    Article  CAS  PubMed  Google Scholar 

  55. Bucella, S. G.; Luzio, A.; Gann, E.; Thomsen, L.; McNeill, C. R.; Pace, G.; Perinot, A.; Chen, Z.; Facchetti, A.; Caironi, M. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat. Commun. 2015, 6, 8394.

    Article  CAS  PubMed  Google Scholar 

  56. Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, L.; Liu, H.; Zhao, Y.; Sun, X.; Wen, Y.; Guo, Y.; Gao, X.; Di, C.; Yu, G.; Liu, Y. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 2012, 24, 436–440.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, Y.; Chen, J.; Sun, Y.; Li, Q.; Cai, Z.; Li, J.; Guo, Y.; Hu, W.; Liu, Y. Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors. Adv. Mater. 2019, 31, 1805761.

    Article  Google Scholar 

  59. Chen, L.; Chi, S.; Zhao, K.; Liu, J.; Yu, X.; Han, Y. Aligned films of the DPP-based conjugated polymer by solvent vapor enhanced drop casting. Polymer 2016, 104, 123–129.

    Article  CAS  Google Scholar 

  60. Zhao, Z.; Liu, H.; Zhao, Y.; Cheng, C.; Zhao, J.; Tang, Q.; Zhang, G.; Liu, Y. Anisotropic charge-carrier transport in high-mobility donor-acceptor conjugated polymer semiconductor films. Chem. Asian J. 2016, 11, 2725–2729.

    Article  CAS  PubMed  Google Scholar 

  61. E. H. Gerhard Klink, A. Drost, D. Hemmetzberger, K. Bock, Conference Polytronic 2005, Oct. 23–26, Wroclaw, Poland, 2005.

  62. Kang, B.; Lee, W. H.; Cho, K. Recent advances in organic transistor printing processes. ACS Appl. Mater. Interfaces 2013, 5, 2302–2315.

    Article  CAS  PubMed  Google Scholar 

  63. Stucchi, E.; Dell’Erba, G.; Colpani, P.; Kim, Y. H.; Caironi, M. Low-voltage, printed, all-polymer integrated circuits employing a low-leakage and high-yield polymer dielectric. Adv. Electr. Mater. 2018, 4, 1800340.

    Article  Google Scholar 

  64. Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S. G.; Salama, K. N.; Sonar, P. Organic field-effect transistor-based flexible sensors. Chem. Soc. Rev. 2020, 49, 3423–3460.

    Article  CAS  PubMed  Google Scholar 

  65. Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex Electr. 2022, 6, 1.

    Article  Google Scholar 

  66. Lee, Y. H.; Jang, M.; Lee, M. Y.; Kweon, O. Y.; Oh, J. H. Flexible field-effect transistor-type sensors based on conjugated molecules. Chem 2017, 3, 724–763.

    Article  CAS  Google Scholar 

  67. Ma, L.; Yi, Z.; Wang, S.; Liu, Y.; Zhan, X. Highly sensitive thin film phototransistors based on a copolymer of benzodithiophene and diketopyrrolopyrrole. J. Mater. Chem. C 2015, 3, 1942–1948.

    Article  CAS  Google Scholar 

  68. Qin, M. C.; Li, Q.-Y.; Zhang, F.; Liu, K.; Liu, Y. W.; Zhu, M. L.; Zhao, Z. Y.; Pan, Z. C.; Bian, Y. S.; Guo, Y. L.; Liu, Y. Q. High performance near-infrared organic photodetectors based on narrow-bandgap diketopyrrolopyrrole-based polymer. Acta Polymerica Sinica (in Chinese) 2022, 53, 405–413.

    CAS  Google Scholar 

  69. Gu, P. Hao.; Du, S.; **e, C. Y.; Cai, B. M.; Zhang, S.; Shi, Y. X. 74–2: The excellent mechanical properties of novel polymer film and it’s application in the foldable AMOLED displays. SID Sympos. Digest of Technical Papers 2019, 50, 1056–1059.

    Article  CAS  Google Scholar 

  70. Liu, Y.; Zhao, Z.; Zhu, M.; Huang, X.; Wei, X.; Chen, H.; Chen, J.; Guo, Y.; Liu, Y. Realizing diketopyrrolopyrrole polymer-based uniform large-area transistors for active circuit via protonic acid mediated molecular self-assembly. Adv. Electr. Mater. 2022, 8, 2100881.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2018YFA0703200), the National Natural Science Foundation of China (Nos. U22A6002, 91833306, 21922511 and 51873216), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB30000000), the CAS Project for Young Scientists in Basic Research (No. YSBR-053), and the CAS-Croucher Funding Scheme for Joint Laboratories, and the CAS Cooperation Project (No. 121111KYSB20200036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Ran Yi or Yun-Qi Liu.

Additional information

Notes

The authors declare no competing financial interest.

Biographies

Zheng-Ran Yi received his PhD degree in organic chemistry from Wuhan University in 2012. After postdoctoral research at Purdue University, he joined Zhuhai Fudan Innovation Institute as a researcher. His research focuses on the design and synthesis of polymer semiconductors for organic field-effect transistors.

Yun-Qi Liu graduated from Nan**g University in 1975, received a doctorate from Tokyo Institute of Technology, Japan, in 1991. Presently, he is a professor at the Institute of Chemistry, an Academician of CAS, and a Member of TWAS. His research interests include molecular materials and devices, the synthesis and applications of carbon nanomaterials, and organic electronics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, KQ., Gu, YH., Yi, ZR. et al. Diketopyrrolopyrrole-based Conjugated Polymers as Representative Semiconductors for High-Performance Organic Thin-Film Transistors and Circuits. Chin J Polym Sci 41, 671–682 (2023). https://doi.org/10.1007/s10118-023-2943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2943-1

Keywords

Navigation