Log in

Polymerizing Ladder-type Heteroheptacene-Cored Small-Molecule Acceptors for Efficient All-Polymer Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

One important subject in the field of all-polymer solar cells (all-PSCs) is the exploration of electron-deficient building blocks with optimized physicochemical properties to promote the performance of polymer acceptors. Here, two ladder-type heteroheptacene-containing small-molecule acceptors with branched 2-octyldodecyl or 2-hexyldecyl side-chains are synthesized and polymerized with the thiophene co-monomer to afford polymer acceptors (PW-OD and PW-HD) with strong near-infrared absorption. Experimental results reveal that the alkyl chain length has a large impact on the molecular packing behavior of the resulting polymers, which in turn affects their light-absorbing and charge transport properties, and thus the photovoltaic performance of the final devices. When blended with the polymer donor PM6, PW-HD-based all-PSCs deliver a higher power conversion efficiency (PCE) of 9.12% compared to the PCE of 6.47% for the PW-OD-based all-PSCs, mainly due to its more ordered inter-chain packing and more favorable blend morphology. This work provides a promising building block for the development of high-performance narrow-bandgap polymer acceptors and highlights the importance of side-chain substitution in optimizing the photovoltaic performance of polymer acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; **ao, Z.; Ding, L.; **a, R.; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.

    CAS  PubMed  Google Scholar 

  2. Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731.

    CAS  PubMed  Google Scholar 

  3. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

    CAS  Google Scholar 

  4. Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 2018, 118, 3447–3507.

    CAS  PubMed  Google Scholar 

  5. Xu, G.; Hu, X.; Liao, X.; Chen, Y. Bending-stability interfacial layer as dual electron transport layer for flexible organic photovoltaics. Chinese J. Polym. Sci. 2021, 39, 1441–1447.

    CAS  Google Scholar 

  6. Bernardo, G.; Lopes, T.; Lidzey, D. G.; Mendes, A. Progress in upscaling organic photovoltaic devices. Adv. Energy Mater. 2021, 11, 2100342.

    CAS  Google Scholar 

  7. Ma, L.; Zhang, S.; Wang, J.; Xu, Y.; Hou, J. Recent advances in nonfullerene organic solar cells: from lab to fab. Chem. Commun. 2020, 56, 14337–14352.

    CAS  Google Scholar 

  8. Chang, S.-Y.; Cheng, P.; Li, G.; Yang, Y. Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2018, 2, 1039–1054.

    CAS  Google Scholar 

  9. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    CAS  Google Scholar 

  10. Clarke, T. M.; Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767.

    CAS  PubMed  Google Scholar 

  11. Bartesaghi, D.; Pérez, I. D. C.; Kniepert, J.; Roland, S.; Turbiez, M.; Neher, D.; Koster, L. J. A. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 2015, 6, 7083.

    CAS  PubMed  Google Scholar 

  12. Facchetti, A. Polymer donor-polymer acceptor (all-polymer) solar cells. Mater. Today 2013, 16, 123–132.

    CAS  Google Scholar 

  13. Zhao, R.; Liu, J.; Wang, L. Polymer acceptors containing B←N units for organic photovoltaics. Acc. Chem. Res. 2020, 53, 1557–1567.

    CAS  PubMed  Google Scholar 

  14. Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 2019, 119, 8028–8086.

    CAS  PubMed  Google Scholar 

  15. Chen, S.; Jung, S.; Cho, H. J.; Kim, N. H.; Jung, S.; Xu, J.; Oh, J.; Cho, Y.; Kim, H.; Lee, B.; An, Y.; Zhang, C.; **ao, M.; Ki, H.; Zhang, Z.-G.; Kim, J. Y.; Li, Y.; Park, H.; Yang, C. Highly flexible and efficient all-polymer solar cells with high-viscosity processing polymer additive toward potential of stretchable devices. Angew. Chem. Int. Ed. 2018, 57, 13277–13282.

    CAS  Google Scholar 

  16. Xu, Y.; Yuan, J.; Liang, S.; Chen, J. D.; **a, Y.; Larson, B. W.; Wang, Y.; Su, G. M.; Zhang, Y.; Cui, C.; Wang, M.; Zhao, H.; Ma, W. Simultaneously improved efficiency and stability in all-polymer solar cells by a P-i-N architecture. ACS Energy Lett. 2019, 4, 2277–2286.

    CAS  Google Scholar 

  17. Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; **a, R.; Liu, F.; Yip, H.-L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun. 2019, 10, 4100.

    PubMed  PubMed Central  Google Scholar 

  18. Chen, J.; Yang, K.; Zhou, X.; Guo, X. Ladder-type heteroarene-based organic semiconductors. Chem. Asian J. 2018, 56, 2587–2600.

    Google Scholar 

  19. Feng, K.; Guo, H.; Sun, H.; Guo, X. N-type organic and polymeric semiconductors based on bithiophene imide derivatives. Acc. Chem. Res. 2021, 54, 3804–3817.

    CAS  PubMed  Google Scholar 

  20. Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 2019, 58, 4129–4142.

    CAS  Google Scholar 

  21. Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mater. 2020, 32, 1308–1314.

    CAS  Google Scholar 

  22. Guo, X.; Tu, D.; Liu, X. Recent advances in rylene diimide polymer acceptors for all-polymer solar cells. J. Energy Chem. 2015, 24, 675–685.

    Google Scholar 

  23. Flesch, H.-G.; Resel, R.; McNeill, C. R. Charge transport properties and microstructure of polythiophene/polyfluorene blends. Org. Electron. 2009, 10, 1549–1555.

    CAS  Google Scholar 

  24. Wu, Y.; Schneider, S.; Walter, C.; Chowdhury, A. H.; Bahrami, B.; Wu, H.-C.; Qiao, Q.; Toney, M. F.; Bao, Z. Fine-tuning semiconducting polymer self-aggregation and crystallinity enables optimal morphology and high-performance printed all-polymer solar cells. J. Am. Chem. Soc. 2020, 142, 392–406.

    CAS  PubMed  Google Scholar 

  25. Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; Yan, H.; Zhao, D. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 2017, 29, 1700309.

    Google Scholar 

  26. Liu, S.; Song, X.; Thomas, S.; Kan, Z.; Cruciani, F.; Laquai, F.; Bredas, J. L.; Beaujuge, P. M. Thieno[3,4-c]pyrrole-4,6-dione-based polymer acceptors for high open-circuit voltage all-polymer solar cells. Adv. Energy Mater. 2017, 7, 1602574.

    Google Scholar 

  27. Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 13503–13507.

    CAS  Google Scholar 

  28. Zhang, Y. Z.; Wang, N.; Wang, Y. H.; Miao, J. H.; Liu, J.; Wang, L. X. 15% Efficiency all-polymer solar cells based on a polymer acceptor containing B←N unit. Chinese J. Polym. Sci. 2022, 40, 989–995.

    CAS  Google Scholar 

  29. Fan, Q.; Su, W.; Chen, S.; Kim, W.; Chen, X.; Lee, B.; Liu, T.; Méndez-Romero, U. A.; Ma, R.; Yang, T.; Zhuang, W.; Li, Y.; Li, Y.; Kim, T.-S.; Hou, L.; Yang, C.; Yan, H.; Yu, D.; Wang, E. Mechanically robust all-polymer solar cells from narrow band gap acceptors with heterobridging atoms. Joule 2020, 4, 658–672.

    CAS  Google Scholar 

  30. Wu, J.; Meng, Y.; Guo, X.; Zhu, L.; Liu, F.; Zhang, M. All-polymer solar cells based on a novel narrow-bandgap polymer acceptor with power conversion efficiency over 10%. J. Mater. Chem. A 2019, 7, 16190–16196.

    CAS  Google Scholar 

  31. Wan, S.; Ma, Y.; Cai, D.; Lin, W.; Wang, P.; Wang, J.; Zheng, Q. Enhancing the photovoltaic performance of ladder-type heteroheptacene-based nonfullerene acceptors by incorporating halogen atoms on their ending groups. Adv. Funct. Mater. 2021, 31, 2010436.

    CAS  Google Scholar 

  32. Tang, C.; Ma, X.; Wang, J.-Y.; Zhang, X.; Liao, R.; Ma, Y.; Wang, P.; Wang, P.; Wang, T.; Zhang, F.; Zheng, Q. High-performance ladder-type heteroheptacene-based nonfullerene acceptors enabled by asymmetric cores with enhanced noncovalent intramolecular interactions. Angew. Chem. Int. Ed. 2021, 60, 19314–19323.

    CAS  Google Scholar 

  33. Ma, Y.; Cai, D.; Wan, S.; Wang, P.; Wang, J.; Zheng, Q. Ladder-type heteroheptacenes with different heterocycles for nonfullerene acceptors. Angew. Chem. Int. Ed. 2020, 59, 21627–21633.

    CAS  Google Scholar 

  34. Sun, H.; Yu, H.; Shi, Y.; Yu, J.; Peng, Z.; Zhang, X.; Liu, B.; Wang, J.; Singh, R.; Lee, J.; Li, Y.; Wei, Z.; Liao, Q.; Kan, Z.; Ye, L.; Yan, H.; Gao, F.; Guo, X. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv. Mater. 2020, 32, 2004183.

    CAS  Google Scholar 

  35. Yu, H.; Wang, Y.; Kim, H. K.; Wu, X.; Li, Y.; Yao, Z.; Pan, M.; Zou, X.; Zhang, J.; Chen, S.; Zhao, D.; Huang, F.; Lu, X.; Zhu, Z.; Yan, H. A Vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency. Adv. Mater. 2022, 34, 2200361.

    CAS  Google Scholar 

  36. Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 2020, 4, 1070–1086.

    CAS  Google Scholar 

  37. Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718.

    CAS  Google Scholar 

  38. Fan, Q.; **ao, Z.; Wang, E.; Ding, L. Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Sci. Bull. 2021, 66, 1950–1953.

    CAS  Google Scholar 

  39. Zhang, Z.-G.; Li, Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433.

    CAS  Google Scholar 

  40. Ma, Y.; Wang, P.; Lin, W.; Wang, W.; Cai, D.; Zheng, Q. High-performance heptacyclic ladder-type heteroarene-based electron acceptors enabled by bulky neighboring side-chains and end-group fluorination. Chem. Eng. J. 2022, 432, 134393.

    CAS  Google Scholar 

  41. Ke, C. X.; Lai, X.; Wang, H. T.; Pu, M. R.; Rehman, T.; Zhu, Y. L.; He, F. Subtle effect of alkyl substituted π-bridges on dibenzo[a,c]phenazine based polymer donors towards enhanced photovoltaic performance. Chinese J. Polym. Sci. 2022, 40, 889–897.

    CAS  Google Scholar 

  42. Wang, H.; Lu, H.; Chen, Y. N.; Zhang, A.; Liu, Y.; Zhang, C. E.; Liu, Y.; Xu, X.; Bo, Z. Effect of polymer chain regularity on the photovoltaic performance of organic solar cells. Chinese J. Polym. Sci. 2022, 40, 996–1002.

    CAS  Google Scholar 

  43. Li, Q.; Jia, T.; Wang, L.-M.; Liu, S.; Liao, X.; Cao, Z.; Zhang, J.; Zhan, X.; Zhu, T.; Cai, Y. P.; Huang, F. Superior layer-by-layer deposition realizing P-i-N all-polymer solar cells with efficiency over 16% and fill factor over 77%. J. Mater. Chem. A 2022, 10, 10880–10891.

    CAS  Google Scholar 

  44. Fu, H.; Li, Y.; Wu, Z.; Lin, F. R.; Woo, H. Y.; Jen, A. K. Y. Side-chain substituents on benzotriazole-based polymer acceptors affecting the performance of all-polymer solar cells. Macromol. Rapid Commun. 2022, 43, 2200062.

    CAS  Google Scholar 

  45. Ma, Y.; Cai, D.; Wan, S.; Yin, P.; Wang, P.; Lin, W.; Zheng, Q. Control over π-π stacking of heteroheptacene-based nonfullerene acceptors for 16% efficiency polymer solar cells. Natl. Sci. Rev. 2020, 7, 1886–1895.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, Y.; Zhang, M.; Wan, S.; Yin, P.; Wang, P.; Cai, D.; Liu, F.; Zheng, Q. Efficient organic solar cells from molecular orientation control of M-series acceptors. Joule 2021, 5, 197–209.

    CAS  Google Scholar 

  47. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; **e, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side-chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

    CAS  Google Scholar 

  48. Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A. M. H.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A Difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv. Funct. Mater. 2021, 31, 2100791.

    CAS  Google Scholar 

  49. Di Nuzzo, D.; Aguirre, A.; Shahid, M.; Gevaerts, V. S.; Meskers, S. C. J.; Janssen, R. A. J. Improved film morphology reduces charge carrier recombination into the triplet excited state in a small bandgap polymer-fullerene photovoltaic cell. Adv. Mater. 2010, 22, 4321–4324.

    CAS  Google Scholar 

  50. Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566.

    CAS  Google Scholar 

  51. Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52130306, 22075287 and 22101285), the Nature Science Foundation of Fujian Province (No. 2021J01515), and the Program of Youth Innovation Promotion Association CAS (No. 2021299).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Long Ma or Qing-Dong Zheng.

Ethics declarations

The authors declare no interest conflict.

Additional information

Invited Research Article of Special Issue on “Organic Photovoltaic Polymers”

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhu, YH., Tao, HX. et al. Polymerizing Ladder-type Heteroheptacene-Cored Small-Molecule Acceptors for Efficient All-Polymer Solar Cells. Chin J Polym Sci 41, 1018–1026 (2023). https://doi.org/10.1007/s10118-023-2909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2909-3

Keywords

Navigation