Log in

Living Crystallization-Driven Self-Assembly of Oligo(p-phenylene vinylene)-Containing Block Copolymers: Impact of Branched Structure of Alkyl Side Chain of π-Conjugated Segment

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The structure of side chains of π-conjugated segments is a critical factor determining living crystallization-driven self-assembly (CDSA), a versatile platform to generate fiber-like nanostructures with precise length and composition. Herein, we design and synthesize three block copolymers (BCPs) containing same corona-forming poly(N-isopropyl acrylamide) (PNIPAM) segment, but different core-forming π-conjugated oligo(p-phenylene vinylene) (OPV) with linear pentyl (l-OPV), racemic 2-methyl butyl (r-OPV) and stereo-regular chiral (S)-2-methyl butyl (c-OPV) side chains, respectively. By using these BCPs of l-OPV-b-PNIPAM47, r-OPV-b-PNIPAM47 and c-OPV-b-PNIPAM47 as model, we aim to get a deep insight into how steric and stereo-regular effect induced by branched alkyl side chains of OPV segment affects the living CDSA. The results showed that l-OPV-b-PNIPAM47 exhibits typical characteristics of self-seeding and seeded growth of living CDSA to give uniform fiber-like micelles of controlled length. On the contrary, r-OPV-b-PNIPAM47 and c-OPV-b-PNIPAM47 with branched racemic and stereo-regular chiral alkyl side chains are more prone to self-nucleation during the micellar elongation to give short and polydisperse fiber-like micelles. The obvious self-nucleation during the micellar elongation of r-OPV-b-PNIPAM47 and c-OPV-b-PNIPAM47 is due to the increase of steric repulsion with OPV units induced by branched alkyl side chains, not the stereo-irregular effect of racemic alkyl side chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, X.; Zhu, Z.; **e, Z.; Liu, J.; Yin, J.; Yang, Y.; Jia, C.; Liu, F.; Yang, J. Self-assembly crystal, manipulated polymorphic crystalline structure and elevated thermal degradation temperature of poly(1,4-butylene adipate): effects of an aryl bisamide-based compound. Compos. Commun. 2021, 25, 100765.

    Article  Google Scholar 

  2. Yuan, Z. Q.; Ding, A. S.; Xu, B. B.; Huang, X. Y.; Lu, G. L.; Guo, H. Double-bond-containing polyallene-based composite nanofibers. Compos. Commun. 2022, 32, 101189.

    Article  Google Scholar 

  3. Cheng, A. H.; Zhang, C. Y; Deng, Z. C.; Sun, Y. L. Structure control of liquid crystalline block copolymers in liquid-phase self-assembly. Chin. J. Appl. Chem. 2021, 38, 1255–1267.

    Google Scholar 

  4. Zhang, Z. Y.; Li, Q.; Wang, D. L.; Fang, J. L.; Chen, D. Z. Controlled synthesis and photophysical properties of liquid crystalline diblock copolymers with side-chain discotic triphylene and calamitic azobenzene mesogens. Chin. J. Appl. Chem. 2021, 38, 1340–1352.

    CAS  Google Scholar 

  5. Zhang, L. F.; Eisenberg, A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1995, 268, 1728–1731.

    Article  CAS  PubMed  Google Scholar 

  6. Cai, W. B.; Liu, D. D.; Chen, Y.; Zhang, L.; Tan, J. B. Enzyme-assisted photoinitiated polymerization-induced self-assembly in continuous flow reactors with oxygen tolerance. Chinese J. Polym. Sci. 2021, 39, 1127–1137.

    Article  CAS  Google Scholar 

  7. Bai, J. L.; Liu, D.; Wang, R. Self-assembly of amphiphilic diblock copolymers induced by liquid-liquid phase separation. Chinese J. Polym. Sci. 2021, 39, 1217–1224.

    Article  CAS  Google Scholar 

  8. Xu, Z.; Li, W. Control the self-assembly of block copolymers by tailoring the packing frustration. Chinese J. Chem. 2022, 40, 1083–1090.

    Article  CAS  Google Scholar 

  9. Zhang, J.; Jiang, J.; Lin, S.; Cornel, E. J.; Li, C.; Du, J. Polymersomes: from macromolecular self-assembly to particle assembly. Chinese J. Chem. 2022, 40, 1842–1855.

    Article  CAS  Google Scholar 

  10. Liu, Y.; Liu, B.; Nie, Z. Concurrent self-assembly of amphiphiles into nanoarchitectures with increasing complexity. Nano Today 2015, 10, 278–300.

    Article  CAS  Google Scholar 

  11. Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun. 2009, 30, 267–277.

    Article  CAS  PubMed  Google Scholar 

  12. Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131.

    Article  CAS  PubMed  Google Scholar 

  13. Jain, S.; Bates, F. S. Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions. Macromolecules 2004, 37, 1511–1523.

    Article  CAS  Google Scholar 

  14. Bhargava, P.; Zheng, J. X.; Li, P.; Quirk, R. P.; Harris, F. W.; Cheng, S. Z. D. Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 2006, 39, 4880–4888.

    Article  CAS  Google Scholar 

  15. Soo, P. L.; Eisenberg, A. Preparation of block copolymer vesicles in solution. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 923–938.

    Article  CAS  Google Scholar 

  16. Battaglia, G.; Ryan, A. J. Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion. Macromolecules 2006, 39, 798–805.

    Article  CAS  Google Scholar 

  17. Zhang, J.; Chen, X. F.; Wei, H. B.; Wan, X. H. Tunable assembly of amphiphilic rod-coil block copolymers in solution. Chem. Soc. Rev. 2013, 42, 9127–9154.

    Article  CAS  PubMed  Google Scholar 

  18. van Rijn, P.; Tutus, M.; Kathrein, C.; Zhu, L. L.; Wessling, M.; Schwaneberg, U.; Boker, A. Challenges and advances in the field of self-assembled membranes. Chem. Soc. Rev. 2013, 42, 6578–6592.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H.; Lin, W. J.; Fritz, K. P.; Scholes, G. D.; Winnik, M. A.; Manners, I. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J. Am. Chem. Soc. 2007, 129, 12924–12929.

    Article  CAS  PubMed  Google Scholar 

  20. Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A. Self-assembly of a novel organometallic-inorganic block copolymer in solution and the solid state: nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethylsiloxane) micelles. J. Am. Chem. Soc. 1998, 120, 9533–9540.

    Article  CAS  Google Scholar 

  21. Qian, J. S.; Guerin, G.; Lu, Y. J.; Cambridge, G.; Manners, I.; Winnik, M. A. Self-seeding in one dimension: an approach to control the length of fiberlike polyisoprene-polyferrocenylsilane block copolymer micelles. Angew. Chem. Int. Ed. 2011, 50, 1622–1625.

    Article  CAS  Google Scholar 

  22. Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 2007, 317, 644.

    Article  CAS  PubMed  Google Scholar 

  23. Ma, J. Y.; Lu, G. L.; Huang, X. Y.; Feng, C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem. Commun. 2021, 57, 13259–13274.

    Article  CAS  Google Scholar 

  24. Cui, Y. N.; Wang, Z. Q.; Huang, X. Y.; Lu, G. L.; Manners, I.; Winnik, M. A.; Feng, C. How a small change of oligo(p-phenylenevinylene) chain length affects self-seeding of oligo(p-phenylenevinylene)-containing block copolymers. Macromolecules 2020, 53, 1831–1841.

    Article  CAS  Google Scholar 

  25. Nie, J. C.; Wang, Z. Q.; Huang, X. Y.; Lu, G. L.; Feng, C. Uniform continuous and segmented nanofibers containing a π-conjugated oligo(p-phenylene ethynylene) core via “living” crystallization-driven self-assembly: importance of oligo(p-phenylene ethynylene) chain length. Macromolecules 2020, 53, 6299–6313.

    Article  CAS  Google Scholar 

  26. Tao, D. L.; Lu, G. L.; Huang, X. Y.; Feng, C. Synthesis and crystallization- driven self-assembly of oligo(p-phenylenevinylene)-b-poly(ethylene glycol). J. Funct. Polym. 2019, 32, 617–625.

    CAS  Google Scholar 

  27. Nie, J. C.; Huang, X. Y.; Lu, G. L.; Winnik, M. A.; Feng, C. Living crystallization-driven self-assembly of linear and V-shaped oligo(p-phenylene ethynylene)-containing block copolymers: architecture effect of π-conjugated crystalline segment. Macromolecules 2022, 55, 7856–7868.

    Article  CAS  Google Scholar 

  28. Kynaston, E. L.; Gould, O. E. C.; Gwyther, J.; Whittell, G. R.; Winnik, M. A.; Manners, I. Fiber-like micelles from the crystallization-driven self-assembly of poly(3-heptylselenophene)-block-polystyrene. Macromol. Chem. Phys. 2015, 216, 685–695.

    Article  CAS  Google Scholar 

  29. Kynaston, E. L.; Nazemi, A.; MacFarlane, L. R.; Whittell, G. R.; Faul, C. F. J.; Manners, I. Uniform polyselenophene block copolymer fiberlike micelles and block co-micelles via living crystallization-driven self-assembly. Macromolecules 2018, 51, 1002–1010.

    Article  CAS  Google Scholar 

  30. Han, L.; Wang, M.; Jia, X.; Chen, W.; Qian, H.; He, F. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π−π interactions with controllable sizes. Nat. Commun. 2018, 9, 865.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tao, D. L.; Feng, C.; Cui, Y. N.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y. Monodisperse fiber-like micelles of controlled length and composition with an oligo(p-phenylenevinylene) core via “living” crystallization-driven self-assembly. J. Am. Chem. Soc. 2017, 139, 7136–7139.

    Article  CAS  PubMed  Google Scholar 

  32. Tao, D. L.; Feng, C.; Lu, Y. J.; Cui, Y. N.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y. Self-seeding of block copolymers with a π-conjugated oligo(p-phenylenevinylene) segment: a versatile route toward monodisperse fiber-like nanostructures. Macromolecules 2018, 51, 2065–2075.

    Article  CAS  Google Scholar 

  33. Ma, J. Y.; Ma, C.; Huang, X. Y.; de Araujo, P. H. H.; Goyal, A. K.; Lu, G. L.; Feng, C. Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. Fundam. Res. 2022. https://doi.org/10.1016/j.fmre.2022.01.020.

  34. Qian, J. S.; Lu, Y. J.; Chia, A.; Zhang, M.; Rupar, P. A.; Gunari, N.; Walker, G. C.; Cambridge, G.; He, F.; Guerin, G.; Manners, I.; Winnik, M. A. Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano 2013, 7, 3754–3766.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, J. J.; Ma, Y.; Hu, W. B.; Rehahn, M.; Reiter, G. Cloning polymer single crystals through self-seeding. Nat. Mater. 2009, 8, 348–353.

    Article  CAS  PubMed  Google Scholar 

  36. Shu, R.; Zha, L.; Eman, A. A.; Hu, W. B. Fibril crystal growth in diblock copolymer solutions studied by dynamic monte carlo simulations. J. Phys. Chem. B 2015, 119, 5926–5932.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, J.; Zha, L.; Hu, W. Effect of solvent selectivity on crystallization-driven fibril growth kinetics of diblock copolymers. Polymer 2018, 138, 359–362.

    Article  CAS  Google Scholar 

  38. Fukui, T.; Garcia-Hernandez, J. D.; MacFarlane, L. R.; Lei, S.; Whittell, G. R.; Manners, I. Seeded self-assembly of charge-terminated poly(3-hexylthiophene) amphiphiles based on the energy landscape. J. Am. Chem. Soc. 2020, 142, 15038–15048.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Foundation for Distinguished Young Scholars (No. 51825304), the National Natural Science Foundation of China (Nos. 52122314, U22A20131, 51873229 and 51961145103), the Youth Innovation Promotion Association of CAS (No. Y2020062), Shanghai Scientific and Technological Innovation Project (Nos. 20JC1415400, 21520780100, 22JC1401000 and 22ZR1475400), Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-05-E00012) and East China University of Science and Technology (No. SLD13223004). The authors thank Dr. Kun Cui for his assistance in TEM measurements and the beamline BL16B1 at SSRF for providing the beam time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao-Yu Huang or Chun Feng.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2023_2893_MOESM1_ESM.pdf

Living Crystallization-Driven Self-Assembly of Oligo(p-phenylene vinylene)-Containing Block Copolymers: Impact of Branched Structure of Alkyl Side Chain of π-Conjugated Segment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., **ang, B., Huang, XY. et al. Living Crystallization-Driven Self-Assembly of Oligo(p-phenylene vinylene)-Containing Block Copolymers: Impact of Branched Structure of Alkyl Side Chain of π-Conjugated Segment. Chin J Polym Sci 41, 574–584 (2023). https://doi.org/10.1007/s10118-023-2893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2893-7

Keywords

Navigation