Log in

Phase Separation of Polymer Blends Induced by an External Static Electric Field

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

An Erratum to this article was published on 31 December 2022

This article has been updated

Abstract

The mechanism of the phase separation of polymer blends in the presence of a static electric field was investigated using the molecular dynamics with a modified coarse-grained polarizable model. Two electric field effects, i.e., the promotion and hindrance of the phase separation, were found in the system of the upper critical solution temperature (UCST) by varying the dielectric properties of polymer components. Our simulation directly demonstrated that the electric field effects originate from the energy changes of intramolecular unit polarization, intermolecular van der Waals (VDW) and Coulomb interactions induced by the external electric field. The relationship of the energy change and the dielectric constant for the system under electric field is obtained. The interface orientation under electric field was found to happen even before the transition point of phase separation. By assuming that the relative order parameter of the phase separation undergoes the same fluctuations for a system with and without an electric field, the transition temperature under an electric field can be predicted, and quantitative consistency with simulations is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Ruppel, M.; Pester, C. W.; Langner, K. M.; Sevink, G. J. A.; Schoberth, H. G.; Schmidt, K.; Urban, V. S.; Mays, J. W.; Böker, A. Electric field induced selective disordering in lamellar block copolymers. ACS Nano 2013, 7, 3854–3867.

    Article  CAS  PubMed  Google Scholar 

  2. Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Patel, S. S.; Smith, S. D. Effect of an electric field on block copolymer microstructure. Macromolecules 1991, 24, 6546–6548.

    Article  CAS  Google Scholar 

  3. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126–2129.

    Article  CAS  PubMed  Google Scholar 

  4. Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313, 334–336.

    Article  CAS  PubMed  Google Scholar 

  5. Roy, P.; Gooh Pattader, P. S. Electrohydrodynamic instability: effect of rheological characteristics on the morphological evolution of liquid crystal-polymer interface. Bull. Mater. Sci. 2020, 43, 169.

    Article  CAS  Google Scholar 

  6. Debye, P. Spectral width of the critical opalescence due to concentration fluctuations. Phys. Rev. Lett. 1965, 14, 783–784.

    Article  CAS  Google Scholar 

  7. Wirtz, D.; Fuller, G. G. Phase transitions induced by electric fields in near-critical polymer solutions. Phys. Rev. Lett. 1993, 71, 2236–2239.

    Article  CAS  PubMed  Google Scholar 

  8. Orzechowski, K. Electric field effect on the upper critical solution temperature. Chem. Phys. 1999, 240, 275–281.

    Article  CAS  Google Scholar 

  9. Beaglehole, D. A critical binary liquid in an electric field. J. Chem. Phys. 1981, 74, 5251–5255.

    Article  CAS  Google Scholar 

  10. Reich, S.; Gordon, J. M. Electric field dependence of lower critical phase separation behavior in polymer-polymer mixtures. Polym. Sci., Part B: Polym. Phys. 1979, 17, 371–378.

    CAS  Google Scholar 

  11. Kriisa, A.; Roth, C. B. Electric fields enhance miscibility of polystyrene/poly(vinyl methyl ether) blends. J. Chem. Phys. 2014, 141, 134908.

    Article  PubMed  Google Scholar 

  12. Lee, J. S.; Prabu, A. A.; Kim, K. J.; Park, C. Phase separation and crystallization behavior of poly(vinylidene fluoride)/poly(1,4-butylene adipate) blends under an electric field. Macromolecules 2008, 41, 3598–3604.

    Article  CAS  Google Scholar 

  13. Lee, J. S.; Prabu, A. A.; Kim, K. J. UCST-type phase separation and crystallization behavior in poly(vinylidene fluoride)/poly(methyl methacrylate) blends under an external electric field. Macromolecules 2009, 42, 5660–5669.

    Article  CAS  Google Scholar 

  14. Schoberth, H. G.; Schmidt, K.; Schindler, K. A.; Böker, A. Shifting the order-disorder transition temperature of block copolymer systems with electric fields. Macromolecules 2009, 42, 3433–3436.

    Article  CAS  Google Scholar 

  15. Early, M. D. Dielectric constant measurements near the critical point of cyclohexane-aniline. J. Chem. Phys. 1992, 96, 641–647.

    Article  CAS  Google Scholar 

  16. Onuki, A.; Doi, M. Electric birefringence and dichroism in critical binary mixtures. EPL 1992, 17, 63–68.

    Article  CAS  Google Scholar 

  17. Onuki, A. Electric-field effects in fluids near the critical point. EPL 1995, 29, 611–616.

    Article  CAS  Google Scholar 

  18. Debye, P.; Gravatt, C. C.; Ieda, M. Electric field effect on the critical opalescence. II. Relaxation times of concentration fluctuations. J. Chem. Phys. 1967, 46, 2352–2356.

    Article  CAS  Google Scholar 

  19. Martin, J. M.; Delaney, K. T.; Fredrickson, G. H. Effect of an electric field on the stability of binary dielectric fluid mixtures. J. Chem. Phys. 2020, 152, 234901.

    Article  CAS  PubMed  Google Scholar 

  20. Tsori, Y.; Tournilhac, F.; Leibler, L. Demixing in simple fluids induced by electric field gradients. Nature 2004, 430, 544–547.

    Article  CAS  PubMed  Google Scholar 

  21. Reich, S.; Cohen, Y. Phase separation of polymer blends in thin films. J. Polym. Sci., Polym. Phys. Ed. 1981, 19, 1255–1267.

    Article  CAS  Google Scholar 

  22. Katsir, Y.; Tsori, Y. Recent advances in liquid mixtures in electric fields. J. Phys.: Condens. Matter 2016, 29, 063002.

    PubMed  Google Scholar 

  23. Orzechowski, K.; Adamczyk, M.; Wolny, A.; Tsori, Y. Shift of the critical mixing temperature in strong electric fields. theory and experiment. J. Phys. Chem. B 2014, 118, 7187–7194.

    Article  CAS  PubMed  Google Scholar 

  24. Xu, T.; Zvelindovsky, A. V.; Sevink, G. J. A.; Gang, O.; Ocko, B.; Zhu, Y.; Gido, S. P.; Russell, T. P. Electric field induced sphere-to-cylinder transition in diblock copolymer thin films. Macromolecules 2004, 37, 6980–6984.

    Article  CAS  Google Scholar 

  25. Lyakhova, K. S.; Zvelindovsky, A. V.; Sevink, G. J. A. Kinetic pathways of order-to-order phase transitions in block copolymer films under an electric field. Macromolecules 2006, 39, 3024–3037.

    Article  CAS  Google Scholar 

  26. Tsori, Y.; Tournilhac, F.; Andelman, D.; Leibler, L. Structural changes in block copolymers: coupling of electric field and mobile ions. Phys. Rev. Lett. 2003, 90, 145504.

    Article  PubMed  Google Scholar 

  27. Lin, C.-Y.; Schick, M.; Andelman, D. Structural changes of diblock copolymer melts due to an external electric field: a self-consistent-field theory study. Macromolecules 2005, 38, 5766–5773.

    Article  CAS  Google Scholar 

  28. Martin, J. M.; Li, W.; Delaney, K. T.; Fredrickson, G. H. SCFT study of diblock copolymer melts in electric fields: selective stabilization of orthorhombic Fddd network phase. Macromolecules 2018, 51, 3369–3378.

    Article  CAS  Google Scholar 

  29. Zhang, Q.; Xu, R.; Kan, D.; He, X. Molecular dynamics simulation of electric-field-induced self-assembly of diblock copolymers. J. Chem. Phys. 2016, 144, 234901.

    Article  PubMed  Google Scholar 

  30. See Supplemental Material for further simulation details and theoretical derivation.

  31. Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314, 141–151.

    Article  CAS  Google Scholar 

  32. Bauer, P.; Hess, B.; Lindahl, E. GROMACS 2022.2. Zenodo: 2022.

  33. Neumann, M. Dipole moment fluctuation formulas in computer simulations of polar systems. Mol. Phys. 1983, 50, 841–858.

    Article  CAS  Google Scholar 

  34. Neumann, M.; Steinhauser, O. Computer simulation and the dielectric constant of polarizable polar systems. Chem. Phys. Lett. 1984, 106, 563–569.

    Article  CAS  Google Scholar 

  35. Groot, R. D.; Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435.

    Article  CAS  Google Scholar 

  36. Horsch, M. A.; Zhang, Z.; Iacovella, C. R.; Glotzer, S. C. Hydrodynamics and microphase ordering in block copolymers: are hydrodynamics required for ordered phases with periodicity in more than one dimension. J. Chem. Phys. 2004, 121, 11455–11462.

    Article  CAS  PubMed  Google Scholar 

  37. Marro, J.; Bortz, A. B.; Kalos, M. H.; Lebowitz, J. L. Time evolution of a quenched binary alloy. II. Computer simulation of a three-dimensional model system. Phys. Rev. B 1975, 12, 2000–2011.

    Article  Google Scholar 

  38. Tsori, Y. Colloquium: phase transitions in polymers and liquids in electric fields. Rev. Mod. Phys. 2009, 81, 1471–1494.

    Article  Google Scholar 

  39. Bottcher, C. J. F. Theory of Electric Polarization. Elsevier Scientific Publishing Company: AMSTERDAM, 1973, Vol. 1.

    Google Scholar 

  40. Landau, L. D.; Lifshitz, E. M. Electrodynamics of Continuous Media. Pergamon: Amsterdam, 1984, Vol. 8.

    Google Scholar 

  41. Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 1941, 9, 440–440.

    Article  CAS  Google Scholar 

  42. Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1941, 9, 660–660.

    Article  CAS  Google Scholar 

  43. Bates Frank, S. Polymer-polymer phase behavior. Science 1991, 251, 898–905.

    Article  Google Scholar 

  44. Fredrickson, G. H.; Helfand, E. Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys. 1987, 87, 697–705.

    Article  CAS  Google Scholar 

  45. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13, 1011–1021.

    Article  CAS  Google Scholar 

  46. Gallicchio, E.; Andrec, M.; Felts, A. K.; Levy, R. M. Temperature weighted histogram analysis method, replica exchange, and transition paths. J. Phys. Chem. B 2005, 109, 6722–6731.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 91127046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hao He.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., He, XH. Phase Separation of Polymer Blends Induced by an External Static Electric Field. Chin J Polym Sci 41, 972–980 (2023). https://doi.org/10.1007/s10118-022-2877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2877-z

Keywords

Navigation