Log in

Cationic CO2-based Waterborne Polyurethane with High Solid Content and Excellent Ageing Resistance

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

High solid content CO2-based cationic waterborne polyurethanes (CWPUs) were prepared using CO2-polyols as soft segment and N-methyl diethanolamine (MDEA) as hydrophilic group. The resulting stable aqueous dispersion displayed a high solid content of 52% with a low MDEA loading of 3.52 wt%. This novel structural CWPU can provide excellent adhesive strength, whose T-peel strength could reach 173.48 N/5cm, 20% higher than that of ester-based cationic waterborne polyurethane (87.55 N/5cm). The CO2-based CWPU film showed only 2 wt% swelling percentage after 240 min immersion in water, and no change was observed during its immersion in 5 wt% sodium hydroxide solution. The tensile strength of CO2-WPUs dropped slowly to 91.2% after 480 min immersion in a 5 wt% sodium hydroxide solution, whereas that of ester-based CWPUs dropped quickly to 32% after 240 min and their mechanical properties were lost after 360 min immersion. Meanwhile, the retention of the tensile strength of the CO2-CWPUs was 81.5% even after 720 min immersion in 10 wt% H2O2 solution, while it was only ca. 38% for the ester-based CWPUs. These results indicated that the cationic CO2-based CWPU may be promising waterborne adhesive with outstanding ageing resistance due to its synergistic effect from carbonate and ether groups of CO2-polyol structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chattopadhyay, D. K.; Raju, K. V. S. N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007, 32, 352–418.

    Article  CAS  Google Scholar 

  2. Chen, K. L.; Gou, W. W.; Wang, X. M.; Zeng, C. J.; Ge, F. Q.; Dong, Z. J.; Wang, C. X. UV-cured fluoride-free polyurethane functionalized textile with pH-induced switchable superhydrophobicity and underwater superoleophobicity for controllable oil/water separation. ACS Sustain. Chem. Eng. 2018, 6, 16616–16628.

    Article  CAS  Google Scholar 

  3. Wang, Z. M.; Gao, D. B.; Yang, J. W.; Chen, Y. L. Synthesis and characterization of UV-curable waterborne polyurethane-acrylate ionomers for coatings. J. Appl. Polym. Sci. 1999, 73, 2869–2876.

    Article  CAS  Google Scholar 

  4. Bai, C. Y.; Zhang, X. Y.; Dai, J. B.; Zhang, C. Y. Water resistance of the membranes for UV curable waterborne polyurethane dispersions. Prog. Org. Coat. 2007, 59, 331–336.

    Article  CAS  Google Scholar 

  5. Fang, Z. H.; Duan, H. Y.; Zhang, Z. H.; Wang, J.; Li, D. Q.; Huang, Y. X.; Shang, J. J.; Liu, Z. Y. Novel heat-resistance UV curable waterborne polyurethane coatings modified by melamine. Appl. Surf. Sci. 2011, 257, 4765–4768.

    Article  CAS  Google Scholar 

  6. Guo, J. H.; Liu, Y. C.; Chai, T.; **g, S. M.; Ma, H.; Qin, N.; Zhou, H.; Yan, T.; He, W. M. Synthesis and properties of a nano-silica modified environmentally friendly polyurethane adhesive. RSC Adv. 2015, 5, 44990–44997.

    Article  CAS  Google Scholar 

  7. Noble, K. L. Waterborne polyurethanes. Prog. Org. Coat. 1997, 32, 131–136.

    Article  CAS  Google Scholar 

  8. Valcic, M. D.; Cakic, S. M.; Ristic, I. S.; Cakic, J. D.; Cvetinov, M. J.; Janos, C. J. Polycaprolactone-based biodegradable acrylated polyurethanes: influence of nanosilica amount on functional properties. Int. J. Adhes. Adhes. 2021, 104, 102738.

    Article  CAS  Google Scholar 

  9. Xu, W.; Zhao, W. J.; Hao, L. F.; Wang, S.; Pei, M. M.; Wang, X. C. Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex. Appl. Surf. Sci. 2018, 436, 1104–1112.

    Article  CAS  Google Scholar 

  10. Shin, M.; Lee, Y.; Rahman, M.; Kim, H. Synthesis and properties of waterborne fluorinated polyurethane-acrylate using a solvent-/emulsifier-free method. Polymer 2013, 54, 4873–4882.

    Article  CAS  Google Scholar 

  11. Park, D. H.; Oh, J. K.; Kim, S. B.; Kim, W. N. Synthesis and characterization of sulfonated polyol-based waterborne polyurethane-polyacrylate hybrid emulsions. Macromol. Res. 2013, 21, 1247–1253.

    Article  CAS  Google Scholar 

  12. Rahman, M. M.; Hasneen, A.; Lee, W. K.; Lim, K. T. Preparation and properties of sol-gel waterborne polyurethane adhesive. J. Sol-Gel Sci. Technol. 2013, 67, 473–479.

    Article  CAS  Google Scholar 

  13. Cakic, S. M.; Stamenkovic, J. V.; Djordjevic, D. M.; Ristic, I. S. Synthesis and degradation profile of cast films of PPG-DMPA-IPDI aqueous polyurethane dispersions based on selective catalysts. Polym. Degrad. Stabil. 2009, 94, 2015–2022.

    Article  CAS  Google Scholar 

  14. Zhang, F. X.; Wei, X. L.; **ao, Z. L. Study on high-solid content Si/PU polyurethane dispersion with PES/PPG composite soft segment. J. Appl. Polym. Sci. 2013, 127, 1730–1736.

    Article  CAS  Google Scholar 

  15. Burja, K.; Segedin, U.; Skale, S.; Berce, P.; Sket, P.; Prosen, P.; Kukanja, D. Improved anticorrosion properties of polyurethane coatings based on high-solids acrylics synthesized in a high pressure reactor. Prog. Org. Coat. 2015, 78, 275–286.

    Article  CAS  Google Scholar 

  16. Jung, D. H.; Kim, E. Y.; Kang, Y. S.; Kim, B. K. High solid and high performance UV cured waterborne polyurethanes. Colloid Surf. A 2010, 370, 58–63.

    Article  CAS  Google Scholar 

  17. Chu, F.; Guyot, A. High solids content latexes with low viscosity. Colloid Polym. Sci. 2001, 279, 361–367.

    Article  CAS  Google Scholar 

  18. Mariz, I. D. A.; de la Cal, J. C.; Leiza, J. R. Control of particle size distribution for the synthesis of small particle size high solids content latexes. Polymer 2010, 51, 4044–4052.

    Article  CAS  Google Scholar 

  19. Ai, Z. Q.; Deng, R.; Zhou, Q. L.; Liao, S. J.; Zhang, H. T. High solid content latex: Preparation methods and application. Adv. Colloid Interfaces 2010, 159, 45–59.

    Article  CAS  Google Scholar 

  20. Guyot, A.; Chu, F.; Schneider, M.; Graillat, C.; McKenna, T. F. High solid content latexes. Prog. Polym. Sci. 2002, 27, 1573–1615.

    Article  CAS  Google Scholar 

  21. He, L. N.; Sun, D. C. Synthesis of high-solid content sulfonate-type polyurethane dispersion by pellet process. J. Appl. Polym. Sci. 2013, 127, 2823–2831.

    Article  CAS  Google Scholar 

  22. Peng, S. J.; **, Y.; Sun, T. B.; Qi, R.; Fan, B. Z.; Cheng, X. F. Synthesis of high solid content waterborne polyurethanes with controllable bimodal particle size distribution. J. Appl. Polym. Sci. 2014, 131, 40420–40428.

    Article  CAS  Google Scholar 

  23. Greenwood, R.; Luckham, P. F.; Gregory, T. Minimising the viscosity of concentrated dispersions by using bimodal particle size distributions. Colloid Surf. A 1998, 144, 139–147.

    Article  CAS  Google Scholar 

  24. Peng, S. J.; **, Y.; Cheng, X. F.; Sun, T. B.; Qi, R.; Fan, B. Z. A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution. Prog. Org. Coat. 2015, 86, 1–10.

    Article  CAS  Google Scholar 

  25. Hou, L. J.; Ding, Y. T.; Zhang, Z. L.; Sun, Z. S.; Shan, Z. H. Synergistic effect of anionic and nonionic monomers on the synthesis of high solid content waterborne polyurethane. Colloid Surf. A 2015, 467, 46–56.

    Article  CAS  Google Scholar 

  26. El-Sayed, A. A.; Kantouch, F. A.; Kantouch, A. Preparation of cationic polyurethane and its application to acrylic fabrics. J. Appl. Polym. Sci. 2011, 121, 777–783.

    Article  CAS  Google Scholar 

  27. **n, H.; Shen, Y. D.; Li, X. R. Novel cationic polyurethane-fluorinated acrylic hybrid latexes: synthesis, characterization and properties. Colloid Surf. A 2011, 384, 205–211.

    Article  CAS  Google Scholar 

  28. Dong, C. H.; **n, W.; Luo, Y. J. Synthesis and application of a cationic waterborne polyurethane fixative using quaternary ammonium diol as a chain extender. RSC Adv. 2018, 8, 42041–42048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang, M. S.; Hemp, S. T.; Zhang, M. Q.; Allen, M. H.; Carmean, R. N.; Moore, R. B.; Long, T. E. Water-dispersible cationic polyurethanes containing pendant trialkylphosphoniums. Polym. Chem. 2014, 5, 3795–3803.

    Article  CAS  Google Scholar 

  30. Sundar, S.; Aruna, P.; Venkateshwarlu, U.; Radhakrishnan, G. Aqueous dispersions of polyurethane cationomers: a new approach for hydrophobic modification and crosslinking. Colloid Polym. Sci. 2004, 283, 209–218.

    Article  CAS  Google Scholar 

  31. Sundar, S.; Vijayalakshmi, N.; Gupta, S.; Rajaram, R.; Radhakrishnan, G. Aqueous dispersions of polyurethane-polyvinyl pyridine cationomers and their application as binder in base coat for leather finishing. Prog. Org. Coat. 2006, 56, 178–184.

    Article  CAS  Google Scholar 

  32. Mohanty, S.; Krishnamurti, N. Synthesis and characterization of aqueous cationomeric polyurethanes and their use as adhesives. J. Appl. Polym. Sci. 1996, 62, 1993–2003.

    Article  CAS  Google Scholar 

  33. Li, M.; Liu, F.; Li, Y.; Qiang, X. H. Synthesis of stable cationic waterborne polyurethane with a high solid content: insight from simulation to experiment. Rsc Adv. 2017, 7, 13312–13324.

    Article  CAS  Google Scholar 

  34. Yu, Q.; Pan, P. T.; Du, Z. L.; Du, X. S.; Wang, H. B.; Cheng, X. The study of cationic waterborne polyurethanes modified by two different forms of polydimethylsiloxane. RSC Adv. 2019, 9, 7795–7802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lu, Y. S.; Larock, R. C. Soybean oil-based, aqueous cationic polyurethane dispersions: synthesis and properties. Prog. Org. Coat. 2010, 69, 31–37.

    Article  CAS  Google Scholar 

  36. Liang, H. Y.; Liu, L. X.; Lu, J. Y.; Chen, M. T.; Zhang, C. Q. Castor oil-based cationic waterborne polyurethane dispersions: storage stability, thermo-physical properties and antibacterial properties. Ind. Crop. Prod. 2018, 117, 169–178.

    Article  CAS  Google Scholar 

  37. Wang, J.; Zhang, H. M.; Miao, Y. Y.; Qiao, L. J.; Wang, X. H.; Wang, F. S. Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chem. 2016, 18, 524–530.

    Article  CAS  Google Scholar 

  38. Gao, Y. G.; Qin, Y. S.; Zhao, X. J.; Wang, F. S.; Wang, X. H. Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. J. Polym. Res. 2012, 19, 9878–9886.

    Article  CAS  Google Scholar 

  39. Gao, Y. G.; Gu, L.; Qin, Y. S.; Wang, X. H.; Wang, F. S. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 5177–5184.

    Article  CAS  Google Scholar 

  40. Barni, A.; Levi, M. Aqueous polyurethane dispersions: a comparative study of polymerization processes. J. Appl. Polym. Sci. 2003, 88, 716–723.

    Article  CAS  Google Scholar 

  41. Chen, L. J.; Qin, Y. S.; Wang, X. H.; Zhao, X. J.; Wang, F. S. Plasticizing while toughening and reinforcing poly(propylene carbonate) using low molecular weight urethane: role of hydrogen-bonding interaction. Polymer 2011, 52, 4873–4880.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 32071686).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Li Cheng or **an-Hong Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HM., Han, GP., Cheng, WL. et al. Cationic CO2-based Waterborne Polyurethane with High Solid Content and Excellent Ageing Resistance. Chin J Polym Sci 40, 1183–1192 (2022). https://doi.org/10.1007/s10118-022-2738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2738-9

Keywords

Navigation