Log in

Molar Mass Dispersity Control by Iodine-mediated Reversible-deactivation Radical Polymerization

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Dispersity (Đ) of polymers has a great effect on the properties of polymeric materials, and therefore how to control Đ is very important but still a huge challenge in polymer synthesis, especially for reversible-deactivation radical polymerization (RDRP) strategy. Herein, we successfully developed a novel strategy to adjust Đ of polymers by visible light-controlled reversible complexation mediated living radical polymerization (RCMP) and combination of single-electron transfer-degenerative chain transfer living radical polymerization (SET-DTLRP) at room temperature. In RCMP system, 2-iodo-2-methylpropionitrile (CP-I) and ethyl 2-iodo-2-phenylacetate (EIPA) were used as alkyl iodide initiators, by using methyl methacrylate (MMA) as the model monomer and n-butylacrylate (BA) as the end-cap** reagent to regulate Đ of polymers. Subsequently, we successfully prepared the block copolymer PMMA-b-PBA with adjustable Đ by reactivating the polymer end-chains via SET-DTLRP in the presence of copper wire, fully demonstrating that it is a promising strategy that can keep the “living” feature of polymers while regulating their molar mass dispersities easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkins, A. D.; Jones, R. G.; Moad, G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations, 2010). Pure Appl. Chem. 2009, 82, 483–491.

    Article  CAS  Google Scholar 

  2. Caruso, M. M.; Davis, D. A.; Shen, Q.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 2009, 109, 5755–5798.

    Article  CAS  PubMed  Google Scholar 

  3. Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 2011, 332, 81–84.

    Article  CAS  PubMed  Google Scholar 

  4. Broderick, E. M.; Guo, N.; Vogel, C. S.; Xu, C.; Sutter, J.; Miller, J. T.; Meyer, K.; Mehrkhodavandi, P.; Diaconescu, P. L. Redox control of a ring-opening polymerization catalyst. J. Am. Chem. Soc. 2011, 133, 9278–9281.

    Article  CAS  PubMed  Google Scholar 

  5. Miao, Y. P.; Lyu, J.; Yong, H. Y.; Sigen, A.; Gao, Y. S.; Wang, W. X. Controlled polymerization of methyl methacrylate and styrene via Cu(0)-mediated RDRP by selecting the optimal reaction conditions. Chinese J. Polym. Sci. 2019, 37, 591–597.

    Article  CAS  Google Scholar 

  6. Destarac, M. Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym Chem. 2018, 9, 4947–4967.

    Article  CAS  Google Scholar 

  7. Ni, Y. Y.; Zhang, L. F.; Cheng, Z. P.; Zhu, X. L. Iodine-mediated reversible-deactivation radical polymerization: a powerful strategy for polymer synthesis. Polym. Chem. 2019, 10, 2504–2515.

    Article  CAS  Google Scholar 

  8. Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311.

    Article  CAS  Google Scholar 

  9. Wang, J. S.; Matyjaszewski, K. Controlled/“living” radical polymerization Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 1995, 28, 7901–7910.

    Article  CAS  Google Scholar 

  10. Haddleton, D. M.; Jasieczek, C. B.; Hannon, M. J.; Shooter, A. J. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper (I) complexes. Macromolecules 1997, 30, 2190–2193.

    Article  CAS  Google Scholar 

  11. Matyjaszewski, K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chem. Eur. J. 1999, 5, 3095–3102.

    Article  CAS  Google Scholar 

  12. Huang, G. C.; Ji, S. X. Effect of Halogen Chain End Fidelity on the Synthesis of Poly(methyl methacrylate-b-styrene) by ATRP. Chinese J. Polym. Sci. 2018, 36, 1217–1224.

    Article  CAS  Google Scholar 

  13. Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559–5562.

    Article  CAS  Google Scholar 

  14. Moad, G.; Chong, Y.; Postma, A.; Rizzardo, E.; Thang, S. H. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 2005, 46, 8458–8468.

    Article  CAS  Google Scholar 

  15. Moad, G.; Rizzardo, E.; Thang, S. H. RAFT polymerization and some of its applications. Chem. Asian J. 2013, 8, 1634–1644.

    Article  CAS  PubMed  Google Scholar 

  16. Guang, N.; Liu, S.; Li, X.; Tian, L.; Mao, H. Micellization and gelation of the double thermoresponsive ABC-type triblock copolymer synthesized by RAFT. Chinese J. Polym. Sci. 2016, 34, 965–980.

    Article  CAS  Google Scholar 

  17. Boyer, C.; Valade, D.; Lacroix-Desmazes, P.; Ameduri, B.; Boutevin, B. Kinetics of the iodine transfer polymerization of vinylidene fluoride. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5763–5777.

    Article  CAS  Google Scholar 

  18. Wolpers, A.; Vana, P. UV light as external switch and boost of molar-mass control in iodine-mediated polymerization. Macromolecules 2014, 47, 954–963.

    Article  CAS  Google Scholar 

  19. Tonnar, J.; Lacroix-Desmazes, P. Controlled radical polymerization of styrene by iodine transfer polymerization (ITP) in ab initio emulsion polymerization. Polymer 2016, 106, 267–274.

    Article  CAS  Google Scholar 

  20. Tezuka, Y. Topological Polymer Chemistry: Progress of Cyclic Polymers in Syntheses, Properties, and Functions. World Scientific: 2013.

  21. Ionov, L.; Zdyrko, B.; Sidorenko, A.; Minko, S.; Klep, V.; Luzinov, I.; Stamm, M. Gradient polymer layers by “grafting to” approach. Macromol. Rapid Commun. 2004, 25, 360–365.

    Article  CAS  Google Scholar 

  22. Lu, C.; Wang, C.; Yu, J.; Wang, J.; Chu, F. Metal-free ATRP “grafting from” technique for renewable cellulose graft copolymers. Green Chem. 2019, 21, 2759–2770.

    Article  CAS  Google Scholar 

  23. Laurent, B. A.; Grayson, S. M. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 2009, 88, 2202–2213.

    Article  CAS  Google Scholar 

  24. Aksakal, R.; Resmini, M.; Becer, C. Pentablock star shaped polymers in less than 90 minutes via aqueous SET-LRP. Polym. Chem. 2016, 7, 171–175.

    Article  CAS  Google Scholar 

  25. Matyjaszewski, K. Advanced materials by atom transfer radical polymerization. Adv. Mater. 2018, 30, 1706441.

    Article  CAS  Google Scholar 

  26. Roy, D.; Giller, C.; Hogan, T.; Roland, C. The rheology and gelation of bidisperse 1, 4-polybutadiene. Polymer 2015, 81, 111–118.

    Article  CAS  Google Scholar 

  27. Yadav, V.; Hashmi, N.; Ding, W.; Li, T. H.; Mahanthappa, M. K.; Conrad, J. C.; Robertson, M. L. Dispersity control in atom transfer radical polymerizations through addition of phenylhydrazine. Polym. Chem. 2018, 9, 4332–4342.

    Article  CAS  Google Scholar 

  28. Whitfield, R.; Parkatzidis, K.; Rolland, M.; Truong, N. P.; Anastasaki, A. Tuning dispersity by photoinduced atom transfer radical polymerisation: monomodal distributions with ppm copper concentration. Angew. Chem. Int. Ed. 2019, 58, 13323–13328.

    Article  CAS  Google Scholar 

  29. Que, Y. R.; Liu, Y. J.; Tan, W.; Feng, C.; Shi, P.; Li, Y. J.; Huang, X. Y. Enhancing photodynamic therapy efficacy by using fluorinated nanoplatform. ACS Macro Lett. 2016, 5, 168–173.

    Article  CAS  PubMed  Google Scholar 

  30. Tao, D. L.; Feng, C.; Cui, Y. A.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X. Y. Monodisperse fiber-like micelles of controlled length and composition with an oligo(p-phenylenevinylene) core via “living” crystallization-driven self-assembly. J. Am. Chem. Soc. 2017, 139, 7136–7139.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, B. B.; Feng, C.; Huang, X. Y. A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nat. Commun. 2017, 8, 333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Feng, C.; Huang, X. Y., Polymer brushes: efficient synthesis and applications. Acc. Chem. Res. 2018, 51, 2314–2323.

    Article  CAS  PubMed  Google Scholar 

  33. Gentekos, D. T.; Dupuis, L. N.; Fors, B. P. Beyond dispersity: deterministic control of polymer molecular weight distribution. J. Am. Chem. Soc. 2016, 138, 1848–1851.

    Article  CAS  PubMed  Google Scholar 

  34. Kottisch, V.; Gentekos, D. T.; Fors, B. P. “Sha**” the future of molecular weight distributions in anionic polymerization. ACS Macro Lett. 2016, 5, 796–800.

    Article  CAS  PubMed  Google Scholar 

  35. Gentekos, D. T.; Jia, J.; Tirado, E. S.; Barteau, K. P.; Smilgies, D. M.; DiStasio, R. A., Jr.; Fors, B. P. Exploiting molecular weight distribution shape to tune domain spacing in block copolymer thin films. J. Am. Chem. Soc. 2018, 140, 4639–4648.

    Article  CAS  PubMed  Google Scholar 

  36. Gentekos, D. T.; Fors, B. P. Molecular weight distribution shape as a versatile approach to tailoring block copolymer phase behavior. ACS Macro Lett. 2018, 7, 677–682.

    Article  CAS  PubMed  Google Scholar 

  37. Corrigan, N.; Almasri, A.; Taillades, W.; Xu, J.; Boyer, C. Controlling molecular weight distributions through photoinduced flow polymerization. Macromolecules 2017, 50, 8438–8448.

    Article  CAS  Google Scholar 

  38. Corrigan, N.; Manahan, R.; Lew, Z. T.; Yeow, J.; Xu, J.; Boyer, C. Copolymers with controlled molecular weight distributions and compositional gradients through flow polymerization. Macromolecules 2018, 51, 4553–4563.

    Article  CAS  Google Scholar 

  39. Liu, X.; Wang, C. G.; Goto, A. Polymer dispersity control by organocatalyzed living radical polymerization. Angew. Chem. 2019, 131, 5654–5659.

    Article  Google Scholar 

  40. Ni, Y.; Tian, C.; Zhang, L.; Cheng, Z.; Zhu, X. Photocontrolled iodine-mediated green reversible-deactivation radical polymerization of methacrylates: effect of water in the polymerization system. ACS Macro Lett. 2019, 8, 1419–1425.

    Article  CAS  PubMed  Google Scholar 

  41. Percec, V.; Popov, A. V.; Ramirez-Castillo, E.; Weichold, O. Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/tris(2-aminoethyl) amine or polyethyleneimine in water at 25 °C proceeds by a new competing pathways mechanism. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3283–3299.

    Article  CAS  Google Scholar 

  42. Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 2006, 128, 14156–14165.

    Article  CAS  PubMed  Google Scholar 

  43. Kapishon, V.; Whitney, R. A.; Champagne, P.; Cunningham, M. F.; Neufeld, R. J. Polymerization induced self-assembly of alginate based amphiphilic graft copolymers synthesized by single electron transfer living radical polymerization. Biomacromolecules 2015, 16, 2040–2048.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22071168 and 21774082) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Fen Zhang or Zhen-** Cheng.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JY., Ni, YY., Cheng, JN. et al. Molar Mass Dispersity Control by Iodine-mediated Reversible-deactivation Radical Polymerization. Chin J Polym Sci 39, 1155–1160 (2021). https://doi.org/10.1007/s10118-021-2602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2602-3

Keywords

Navigation