Log in

Effect and Mechanism of Solvent Properties on Solution Behavior and Films Condensed State Structure for the Semi-rigid Conjugated Polymers

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Solvents have an essential association with polymer solution behavior. However, few researches have been deeply done on this respect. In recent years, our research group focus on the study on effect of solvent properties on solution behavior and film condensed state structure for semi-rigid conjugated polymer up till to apply for optoelectronic device. Herein, influence of solvent properties including solubility of solvent, aromaticity, polarity and hydrogen bonds on semi-rigid polymer chain solution behavior, i.e., single chain conformation, chain shape, size and chains aggregated density were studied by means of static/dynamic laser light scattering (DLS/SLS) and exponential law etc. Effect of solvent properties on condensed state structure of the semi-rigid conjugated polymer film was studied by UV absorption spectroscopy, PL spectroscopy and electron microscopy etc. The essential reasons for the influence were discovered and the mechanism was revealed. It was found that solution behavior with different solvent properties had an essential physical relationship with chains condensed state structure of the semi-rigid conjugated polymers. More importantly, there was a quantitative structure-activity relationship between solution and film. The key to this relationship depended on the interaction between solvent molecules and the semi-rigid conjugated polymer chains. This interaction could also affect optoelectronic devices performance. This study is of great significance to effectively control the condensed state structure of the semirigid conjugated polymers in the process of dynamic evolution from solutions to films. It not only enriches the knowledge and understanding of both semi-rigid conjugated polymer solution behaviors and film condensed state physics based on polymer physics, but also is meaningful to practical application for conjugated polymer and other traditional polymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friend, R. H; Gymer, R. W; Holmes, A. B; Burroughes, J. H; Marks, R. N; Taliani, C; Bradley, D. D. C; Dos Santos, D. A; Bredas, J. L; Logdlund, M; Salaneck, W. R. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128.

    Article  CAS  Google Scholar 

  2. Brabec, C. J; Sariciftci, N. S; Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 2001, 11, 15–26.

    Article  CAS  Google Scholar 

  3. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375.

    Article  CAS  Google Scholar 

  4. Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 2007, 36, 151–160.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, G.; Niu, A.; Peng, S.; Jiang, M.; Tu, Y.; Li, M.; Wu, C. Formation of novel polymeric nanoparticles. Acc. Chem. Res. 2001, 34, 249–256.

    Article  CAS  PubMed  Google Scholar 

  6. Beaupre, S; Leclerc, M. Fluorene-based copolymers for red-light-emitting diodes. Adv. Funct. Mater. 2002, 12, 192–196.

    Article  CAS  Google Scholar 

  7. Cheng, Y. J; Yang, S. H; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, X; Hu, X. 15 Major cities’ scientific and technological innovation sources are released. China Awards for Science and Technology 2019, 6, 70–72.

    Article  CAS  Google Scholar 

  9. McGehee, M. D.; Heeger, A. J. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 2000, 12, 1655–1668.

    Article  CAS  Google Scholar 

  10. Pei, J.; Liu, X. L.; Chen, Z. K.; Zhang, X. H.; Lai, Y. H.; Huang, W. First hydrogen-bonding-induced self-assembled aggregates of a polyfluorene derivative. Macromolecules 2003, 36, 323–327.

    Article  CAS  Google Scholar 

  11. Dudek, S. P.; Pouderoijen, M.; Abbel, R.; Schenning, A. P. H. J.; Meijer, E. W. Synthesis and energy-transfer properties of hydrogen-bonded oligofluorenes. J. Am. Chem. Soc. 2005, 127, 11763–11768.

    Article  CAS  PubMed  Google Scholar 

  12. Zaumseil, J; Donley, C. L; Kim, J. S; Friend, R. H; Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 2006, 18, 2708–2712.

    Article  CAS  Google Scholar 

  13. Liu, F; Tang, X. Polymer physics (in Chinese), Higher Education Press, Bei**g, 2000, p. 39.

    Google Scholar 

  14. Bhardwaj, N.; Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J. Y; Lee, K; Coates, N. E; Moses, D; Nguyen, T. Q; Dante, M; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, J. W.; Huang, C. C.; Chao, C. Y. Supramolecular liquid-crystal gels formed by polyfluorene-based π-conjugated polymer for switchable anisotropic scattering device. ACS Appl. Mater. Interfaces 2010, 6, 6757–6764.

    Article  CAS  Google Scholar 

  17. Raspaud, E.; Lairez, D.; Adam, M.; Carton, J. P. Triblock copolymers in a selective solvent. 1. Aggregation process in dilute solution. Macromolecules 1994, 27, 2956–2964.

    Article  CAS  Google Scholar 

  18. Wu, Q. Polymer Condensed Matter Physics (in Chinese), Science Press, Bei**g, 2016, p. 59.

    Google Scholar 

  19. Mes, T; Weegen, R. V. D; Palmans, A. R. A; Meijer, E. W. Single-chain polymeric nanoparticles by stepwise folding. Angew. Chem. Int. Ed. 2011, 50, 5085–5089.

    Article  CAS  Google Scholar 

  20. Daoud, M.; Cotton, J. P.; Farnoux, B.; Jannink, G.; Sarma, G.; Benoit, H.; Duplessix, C.; Picot, C.; de Gennes, P. G. Solutions of flexible polymers Neutron experiments and interpretation. Macromolecules 1975, 8, 804–818.

    Article  CAS  Google Scholar 

  21. Dai, S.; Tam, K. C.; Jenkins, R. D. Microstructure of dilute hydrophobically modified alkali soluble emulsion in aqueous salt solution. Macromolecules 2000, 33, 404–411.

    Article  CAS  Google Scholar 

  22. Wang, Z. H.; Lu, Y. Y.; **, H.; Luo, C. F.; An, L. J. Diffusion of a ring threaded on a linear chain. Chinese J. Polym. Sci. 2020, 38, 1409–1417.

    Article  CAS  Google Scholar 

  23. Zhang, X; Dong, H; Hu, W. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 2018, 1801048.

  24. Neher, D. Polyfluorene homopolymers: conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromol. Rapid Commun. 2001, 22, 1365–1385.

    Article  CAS  Google Scholar 

  25. Rothe, C; Galbrecht, F; Scherf, U; Monkman, A. The β-phase of poly(9,9-dioctylfluorene) as a potential system for electrically pumped organic lasing. Adv. Mater. 2006, 18, 2137–2140.

    Article  CAS  Google Scholar 

  26. Kuehne, A. J. C.; Kaiser, M.; MacKintosh, A. R.; Wallikewitz, B. H.; Hertel, D.; Pethrick, R. A.; Meerholz, K. Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene): dual-wavelength lasing from a mixed-morphology device. Adv. Funct. Mater. 2011, 21, 2564–2570.

    Article  CAS  Google Scholar 

  27. Jager, E. W. H.; Smela, E.; Inganas, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540–1545.

    Article  CAS  PubMed  Google Scholar 

  28. Huang, L.; Huang, X.; Sun, G.; Gu, C.; Lu, D.; Ma, Y. Study of β phase and chains aggregation degrees in poly(9,9-dioctylfluorene) (PFO) solution. J. Phys. Chem. C 2012, 116, 7993–7999.

    Article  CAS  Google Scholar 

  29. Li, T.; Huang, L.; Bai, Z.; Li, X.; Liu, B.; Lu, D. Study on the forming condition and mechanism of the β conformation in poly(9,9-dioctylfluorene) solution. Polymer 2016, 33, 71–78.

    Article  CAS  Google Scholar 

  30. Bai, Z.; Liu, Y.; Li, T.; Li, X.; Liu, B.; Liu, B.; Lu, D. Quantitative study on β-phase heredity based on poly(9,9-dioctylfluorene) from solutions to films and the effect on hole mobility. J. Phys. Chem. C 2016, 120, 27820–27828.

    Article  CAS  Google Scholar 

  31. Liu, B.; Zhang, H.; Ren, J.; Ma, T.; Yu, M.; **e, L.; Lu, D. Effect of solvent aromaticity on poly(9,9-dioctylfluorene) (PFO) chain solution behavior and film condensed state structure. Polymer 2019, 185, 121986.

    Article  CAS  Google Scholar 

  32. Zhang, H.; Li, T.; Ma, T.; Liu, B.; Ren, J.; Lin, J.; Yu, M.; **e, L.; Lu, D. Effect of solvents on the solution state and film condensed state structures of a polyfluorene conjugated polymer in the dynamic evolution process from solution to film. J. Phys. Chem. C 2019, 123, 27317–27326.

    Article  CAS  Google Scholar 

  33. Ma, T.; Song, N.; Qiu, J.; Zhang, H.; Lu, D. Synergistic effects of external electric field and solvent vapor annealing with different polarities to enhance β-phase and carrier mobility of the poly(9,9-dioctylfluorene) films. Chem. Res. Chinese Univ. 2020, 36, 1310–1319.

    Article  CAS  Google Scholar 

  34. Knaapila, M.; Dias, F. B.; Garamus, V. M.; Almásy, L.; Torkkeli, M.; Leppänen, K.; Galbrecht, F.; Preis, E.; Burrows, H. D.; Scherf, U.; et al. Influence of side chain length on the self-assembly of hairyrod poly(9,9-dialkylfluorene)s in the poor solvent methylcyclohexane. Macromolecules 2007, 40, 9398–9405.

    Article  CAS  Google Scholar 

  35. Lu, H. H.; Liu, C. Y.; Chang, C. H.; Chen, S. A. Self-dopant formation in poly(9,9-di-n-octylfluorene) via a dip** method for efficient and stable pure-blue electroluminescence. Adv. Mater. 2007, 19, 2574–2579.

    Article  CAS  Google Scholar 

  36. Peet, J.; Brocker, E.; Xu, Y.; Bazan, G. C. Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives. Adv. Mater. 2008, 20, 1882–1885.

    Article  CAS  Google Scholar 

  37. Zhang, H.; Huang, L.; Li, T.; Liu, B.; Bai, Z.; Li, X.; Lu, D. Quantitative structure-property relationship of polyfluorene conjugated polymers condensed state from solution to film. Acta Chim. Sin. 2019, 77, 397–405.

    Article  CAS  Google Scholar 

  38. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Chain geometry, solution aggregation and enhanced dichroism in the liquid-crystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 1998, 49, 439–444.

    Article  CAS  Google Scholar 

  39. Huang, Z.; Huang, Y.; Li, X.; Zhang, L. Molecular mass and chain conformations of rhizoma panacis japonici polysaccharides. Carbohydr. Polym. 2009, 78, 596–601.

    Article  CAS  Google Scholar 

  40. Zhang, Y; Li, S; Zhang, L. Aggregation behavior of triple helical polysaccharide with low molecular weight in diluted aqueous solution. J. Phys. Chem. B 2010, 114, 4945–4954.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Y; Wu, Q; Fang, Q; Zhang, Y. X. A light-scattering study of the aggregation behavior of fluorocarbon-modified polyacrylamides in water. Macromolecules 1996, 29, 2494–2497.

    Article  CAS  Google Scholar 

  42. Zheng, Y. Q.; Yao, Z. F.; Lei, T.; Dou, J. H.; Yang, C. Y.; Zou, L.; Meng, X.; Ma, W.; Wang, J. Y.; Pei, J. Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solid-state morphology and charge-transport properties. Adv. Mater. 2017, 29, 1701072.

    Article  CAS  Google Scholar 

  43. Huang, L.; Li, T.; Liu, B.; Zhang, L.; Bai, Z.; Li, X.; Huang, X.; Lu, D. A transformation process and mechanism between the α-conformation and β-conformation of conjugated polymer PFO in precursor solution. Soft Matter 2015, 11, 2627–2638.

    Article  CAS  PubMed  Google Scholar 

  44. Kirkwood, J. G.; Riseman, J. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 1948, 16, 565–573.

    Article  CAS  Google Scholar 

  45. Li, T.; Lu, D. The shape characteristics of complex single chain and aggregation by exponential law. Acta Chim. Sin. 2016, 74, 649–656.

    Article  CAS  Google Scholar 

  46. Lin, J.; Yu, Z.; Zhu, W.; **ng, G.; Lin, Z.; Yang, S.; **e, L.; Niu, C.; Huang, W. A π-conjugated polymer gelator from polyfluorene-based poly(tertiary alcohol) via the hydrogen-bonded supramolecular functionalization. Polym. Chem. 2013, 4, 477–483.

    Article  CAS  Google Scholar 

  47. Lin, J. Y.; Wong, J.; **e, L. H.; Dong, X. C.; Yang, H. Y.; Huang, W. Hydrogen-bonded supramolecular conjugated polymer nanoparticles for white light-emitting devices. Macromol. Rapid Commun. 2014, 35, 895–900.

    Article  CAS  PubMed  Google Scholar 

  48. Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Spectral and thermal spectral stability study for fluorene-based conjugated polymers. Macromolecules 2002, 35, 6907–6914.

    Article  CAS  Google Scholar 

  49. Rodrigues, R. F.; Charas, A.; Morgado, J.; Maçanita, A. Self-organization and excited-state dynamics of a fluorene-bithiophene copolymer (F8T2) in solution. Macromolecules 2010, 43, 765–771.

    Article  CAS  Google Scholar 

  50. Lee, S. W.; Kim, C. H.; Lee, S. G.; Jeong, J. H.; Choi, J. H.; Lee, E. S. Mobility improvement of P3HT thin film by high-voltage electrostatic field-assisted crystallization. Electron. Mater. Lett. 2013, 9, 471–476.

    Article  CAS  Google Scholar 

  51. Ren, J.; Li, X.; Ma, T.; Liu, B.; Zhang, H.; Li, T.; Lu, D. Dynamic evolution from chain disorder to order of PTB7 condensed state structures under external fields. ACS Appl. Mater. Interfaces 2018, 10, 28093–28102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Nos. 91333103 and 21574053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Lu.

Additional information

Biography

Dan Lu received her Ph.D degree from the State Key Lab. of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 1998. As a Postdoctoral with Prof. Jiacong Shen from 1998 to 2001 in the Key Laboratory of Supramolecular Structure and Materials, Jilin University. As a Research Fellow with Professor Yiu-Wing Mai at the City University of Hong Kong from 2001 to 2003. She was appointed as an Associate Professor at College of Chemistry, Jilin Univeristy in 2001, a Professor in 2006. As a senior visiting scholar with Prof. Thomas P. Russell group in Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA in 2013. She leads a Condensed State Physice of Conjugated Polymers group working on precursor solution chains behavior of the conjugated polymers, condensed state structure and photoelectronic function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, T., Liu, B. et al. Effect and Mechanism of Solvent Properties on Solution Behavior and Films Condensed State Structure for the Semi-rigid Conjugated Polymers. Chin J Polym Sci 39, 796–814 (2021). https://doi.org/10.1007/s10118-021-2555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2555-6

Keywords

Navigation