Log in

Design and Properties of Fluoroelastomer Composites via Incorporation of MWCNTs with Varied Modification

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) modified with silane coupling agent A-1120 (MWCNTs-A1120) were prepared. Compared with the raw MWCNTs, acidified MWCNTs (MWCNTs-COOH), and MWCNTs grafted with EDA (MWCNTs-NH2), MWCNTs-A1120 have the best dispersion in fluoroelastomer at the same do** ratio. Therefore, fluoroelastomer/MWCNTs-A1120 composite has the best mechanical properties with tensile strength of 13.92 MPa and elongation at break of 111.78%. Then, the effects of do** amount of MWCNTs-A1120 on the electrical properties of the composites were investigated. The dielectric constant of the composite increases with the increase of MWCNTs-A1120, and the dielectric loss does not change much at the low do** amount such as 0.5 wt%. When the do** amount of MWCNTs-A1120 is 5 wt%, the dielectric constant and the dielectric loss value are greatly increased, and the volume resistivity is greatly decreased, which proves that the conductive network is formed in the composite, so the filling amount of 5 wt% is the percolation threshold. The tensile deformation of the sample also affects the electrical properties of the composites. As the tensile deformation increases, the dielectric constant and dielectric loss of the composite decrease. For the composite with 5 wt% MWCNTs-A1120, excessive tensile deformation will destroy the conductive network structure of the composite, so the composite will change from conductive material to dielectric material. Therefore, such composite is a good candidate for flexible conductive material or flexible dielectric material used in harsh environments such as high temperatures and various aggressive solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raimondo, M.; Naddeo, C.; Vertuccio, L.; Bonnaud, L.; Dubois, P.; Binder, W. H.; Sorrentino, A.; Guadagno, L. Multifunctionality of structural nanohybrids: the crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance. Nanotechnology2020, 31, 225708.

    Article  Google Scholar 

  2. Stephen, R.; Thomas, S. Electronic applications of styrenebutadiene rubber and its composites. Flexible Stretchable Electron. Compos.2016, 261–277.

  3. Balakumaran, S. S. G.; O’Neill, K.; Springer, T. C.; Matteo, A. Elastomeric concrete plug joints a new durable bridge expansion joint design. Transp. Res. Record2017, 18–25.

  4. Moni, G.; Mayeen, A.; Mohan, A.; George, J. J.; Thomas, S.; George, S. C. Ionic liquid functionalised reduced graphene oxide fluoroelastomer nanocomposites with enhanced mechanical, dielectric and viscoelastic properties. Eur. Polym. J.2018, 109, 277–287.

    Article  CAS  Google Scholar 

  5. Greil, P. Perspectives of nano-carbon based engineering materials. Adv. Eng. Mater.2015, 17, 124–137.

    Article  CAS  Google Scholar 

  6. Tagelsir, Y.; Li, S. X.; Lv, X.; Wang, S.; Wang, S.; Osman, Z. Effect of oxidized and fluorinated MWCNTs on mechanical, thermal and tribological properties of fluoroelastomer/carbon black/MWCNT hybrid nanocomposite. Mater. Res. Express2018, 5, DOI: https://doi.org/10.1088/2053-1591/aacb50.

  7. Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci.2010, 35, 357–401.

    Article  CAS  Google Scholar 

  8. Song, S.; **a, S.; Wei, Y.; Lv, X.; Sun, S.; Li, Q. Fluoro-polyme-coated carbon nanotubes for improved interfacial interactions and dielectric properties in MWCNTs/PVDF composites. J. Mater. Sci.2019, 55, 3212–3227.

    Article  Google Scholar 

  9. **ong, J.; Guo, J.; Chen, X.; Gao, W. Improving mechanical and electrical properties of fluoroelastomer nanocomposites by incorporation of low content of reduced graphene oxide via fast evaporation mixing. Polym. Compos.2019, 40, E1495–E1503.

    Article  CAS  Google Scholar 

  10. Ren, Y.; Zhou, Z.; Chen, G. X.; Li, Q. Regulating the dielectric property of percolative composites via a core-shell-structured ionic liquid/carbon nanotube hybrid. J. Mater. Sci.2019, 54, 7096–7109.

    Article  CAS  Google Scholar 

  11. Ding, S.; Feng, J.; Hao, J.; Liao, Q. A study on the fire resistance performance and thermal degradation behavior of a new intumescent flame retardant fluoroelastomer. J. Fire Sci.2014, 32, 362–373.

    Article  CAS  Google Scholar 

  12. Ornaghi, F. G.; Bianchi, O.; Ornaghi Jr, H. L.; Jacobi, M. A. M. Fluoroelastomers reinforced with carbon nanofibers: a survey on rheological, swelling, mechanical, morphological, and prediction of the thermal degradation kinetic behavior. Polym. Eng. Sci.2019, 59, 1223–1232.

    Article  CAS  Google Scholar 

  13. Pawar, S. P.; Melo, G.; Sundararaj, U. Dual functionality of hierarchical hybrid networks of multiwall carbon nanotubes anchored magnetite particles in soft polymer nanocomposites: simultaneous enhancement in charge storage and microwave absorption. Compos. Sci. Technol.2019, 183, 107802.

    Article  CAS  Google Scholar 

  14. Shajari, S.; Mahmoodi, M.; Rajabian, M.; Karan, K.; Sundararaj, U.; Sudak, L. J. Highly sensitive and stretchable carbon nanotube/fluoroelastomer nanocomposite with a double-percolated network for wearable electronics. Adv. Electron. Mater. 2020, 6, 1901067.

    Article  CAS  Google Scholar 

  15. Yao, X.; Kou, X.; Qiu, J. Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity. Org. Electron.2016, 38, 55–60.

    Article  CAS  Google Scholar 

  16. Kuznetsova, A.; Popova, I.; Yates, J. T.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 2001, 123, 10699–10704.

    Article  CAS  Google Scholar 

  17. Gao, W.; Guo, J.; **ong, J.; Smith, A. T.; Sun, L. Improving thermal, electrical and mechanical properties of fluoroelastomer/aminofunctionalized multi-walled carbon nanotube composites by constructing dual crosslinking networks. Compos. Sci. Technol.2018, 162, 49–57.

    Article  CAS  Google Scholar 

  18. Yuen, S. M.; Ma, C. C. M.; Chiang, C. L.; Teng, C. C. Morphology and properties of aminosilane grafted MWCNT/polyimide nanocomposites. J. Nanomater.2008, 1–15.

  19. Yang, G.; Tong, L.; You, Y.; Lei, X.; Liu, X. A study on fluoroelastomer/MWCNTs-COOH dielectric composite with high temperature and acid resistance. J. Mater. Sci.: Mater. Electron.2019, 30, 16359–16368.

    CAS  Google Scholar 

  20. Khan, M. W.; Asif, S. U.; Ur, Rehman K. M.; Uddin, W.; Mubasher;, Ahmed S.; Khan, E. U.; Tagliaferro, A.; Jagdale, P.; Fakhar-e-Alam, M. The electrical behavior of functionalized multiwall carbon nanotubes decorated with polymer nanocomposites. Phys. B: Condens. Matter2019, 556, 17–21.

    Article  CAS  Google Scholar 

  21. de Menezes, B. R. C.; Ferreira, F. V.; Silva, B. C.; Simonetti, E. A. N.; Bastos, T. M.; Cividanes, L. S.; Thim, G. P. Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J. Mater. Sci.2018, 53, 14311–14327.

    Article  CAS  Google Scholar 

  22. Meng, X.; Liu, X.; Cong, C.; Zhou, Q. Strategy of tailoring the interface between multiwalled carbon nanotube and fluoroelastomer. Polym. Compos.2015, 36, 257–263.

    Article  CAS  Google Scholar 

  23. Kim, M. U.; Lee, J. M.; Roh, H. G.; Kang, H. J.; Park, S. H.; Oh, S. J.; Lee, J. S.; Park, J. S. Covalent functionalization of multi-walled carbon nanotubes surface via chemical treatment. J. Nanosci. Nanotechnol.2017, 17, 2463–470.

    Article  CAS  Google Scholar 

  24. Scheibe, B.; Borowiak-Palen, E.; Kalenczuk, R. J. Oxidation and reduction of multiwalled carbon nanotubes-preparation and characterization. Mater. Charact.2010, 61, 185–191.

    Article  CAS  Google Scholar 

  25. Xu, T.; Yang, J. Effects of surface modification of MWCNT on the mechanical and electrical properties of fluoro elastomer/MWCNT nanocomposites. J. Nanomater.2012, 2012, 1–9.

    Google Scholar 

  26. Her, S. C.; Yeh, S. W. Fabrication and characterization of the composites reinforced with multi-walled carbon nanotubes. J. Nanosci. Nanotechnol.2012, 12, 8110–5.

    Article  CAS  Google Scholar 

  27. Nayak, G. C.; Rajasekar, R.; Das, C. K. Effect of SiC coated MWCNTs on the thermal and mechanical properties of PEI/LCP blend. Compos. Part A2010, 41, 1662–1667.

    Article  Google Scholar 

  28. Vaudreuil, S.; Labzour, A.; Sinha-Ray, S.; El Mabrouk, K.; Bousmina, M. Dispersion characteristics and properties of poly(methyl methacrylate)/multi-walled carbon nanotubes nanocomposites. J. Nanosci. Nanotechnol.2007, 7, 2349–2355.

    Article  CAS  Google Scholar 

  29. Farrag, E. A. M. Dielectric relaxation behavior of three-phase MWCNTs-PANI polystyrene nanocomposites. J. Thermoplast. Compos. Mater.2018, 32, 884–894.

    Article  Google Scholar 

  30. You, Y.; Liu, S.; Tu, L.; Wang, Y.; Zhan, C.; Du, X.; Wei, R.; Liu, X. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors. Macromolecules2019, 52, 5850–5859.

    Article  CAS  Google Scholar 

  31. Chen, C.; Li, X.; Wen, Y.; Liu, J.; Li, X.; Zeng, H.; Xue, Z.; Zhou, X.; **e, X. Noncovalent engineering of carbon nanotube surface by imidazolium ionic liquids: a promising strategy for enhancing thermal conductivity of epoxy composites. Compos. Part A2019, 125, 105517.

    Article  Google Scholar 

  32. Theodore, A. N.; Carter, R. O. Characterization of fluoroelastomer networks. 1. Infrared analysis. J. Appl. Polym. Sci.1993, 49, 1071–1080.

    Article  CAS  Google Scholar 

  33. **a, L.; Wang, M.; Wu, H.; Guo, S. Effects of cure system and filler on chemical aging behavior of fluoroelastomer in simulated proton exchange membrane fuel cell environment. Int. J. Hydrogen Energy2016, 41, 2887–2895.

    Article  CAS  Google Scholar 

  34. Wang, L.; Liu, X.; Liu, C.; Zhou, X.; Liu, C.; Cheng, M.; Wei, R.; Liu, X. Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties. Chem. Eng. J.2020, 384, 123231.

    Article  CAS  Google Scholar 

  35. Wan, B.; Yue, S.; Li, H.; Liu, Y.; Zhang, Q. Significantly enhanced dielectric and energy storage properties of plate-like BN@BaTiO3 composite nanofibers filled polyimide films. Mater. Res. Bull.2019, 120, 110573.

    Article  CAS  Google Scholar 

  36. Feng, M.; Huang, X.; Pu, Z.; Liu, X. Dielectric and mechanical properties of three-component Al2O3/MWCNTs/polyarylene ether nitrile micro-nanocomposite. J. Mater. Sci.: Mater. Electron.2014, 25, 1393–1399.

    CAS  Google Scholar 

  37. Duan, G.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Preparation of PMIA dielectric nanocomposite with enhanced thermal conductivity by filling with functionalized graphene-carbon nanotube hybrid fillers. Appl. Nanosci.2019, 9, 1743–1757.

    Article  CAS  Google Scholar 

  38. Ellingford, C.; Smith, H.; Yan, X.; Bowen, C.; Figiel, Ł.; McNally, T.; Wan, C. Electrical dual-percolation in MWCNTs/SBS/PVDF based thermoplastic elastomer (TPE) composites and the effect of mechanical stretching. Eur. Polym. J.2019, 112, 504–514.

    Article  CAS  Google Scholar 

  39. Xu, W. J.; Allen, M. G. Deformable strain sensors based on patterned MWCNTs/polydimethylsiloxane composites. J. PolymSci., Part B: Polym. Phys.2013, 51, 1505–1512.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51603029, 51773028, and 51903029), China Postdoctoral Science Foundation (No. 2017M623001), and National Postdoctoral Program for Innovative Talents (No. BX201700044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Fen Tong or **ao-Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, GY., Tong, LF. & Liu, XB. Design and Properties of Fluoroelastomer Composites via Incorporation of MWCNTs with Varied Modification. Chin J Polym Sci 38, 983–992 (2020). https://doi.org/10.1007/s10118-020-2405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2405-y

Keywords

Navigation