Log in

Hybrid Copolymerization via the Combination of Proton Transfer and Ring-opening Polymerization

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Phosphazene base, t-BuP2, was employed to catalyze the proton transfer polymerization (PTP) of 2-hydroxyethyl acrylate (HEA), and PTP was further combined with ring-opening polymerization (ROP) to exploit a new type of hybrid copolymerization. The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature, giving an excellent monomer conversion. Throughout the polymerization, transesterification reactions were unavoidable, which increased the randomness in the structures of the resulting polymers. The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25 °C. During copolymerization, HEA not only provided hydroxyl groups to initiate the ROP of ε-caprolactone (CL) but also participated in the polymerization as a monomer for PTP. The copolymer composition was approximately equal to the feed ratio, demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio. This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials. Hence, it is important not only in polymer chemistry but also in environmental and biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flory, P. J. Principles of polymer chemistry. Cornell University Press, New York, 1953. p.178.

    Google Scholar 

  2. Sanford, M. J.; Zee, N. J. V.; Coates, G. W. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: Access to orthogonally functionalizable multiblock aliphatic polyesters. Chem. Sci.2018, 9, 134–142.

    PubMed  CAS  Google Scholar 

  3. Guégain, E.; Tran, J.; Deguettes, Q.; Nicolas, J. Degradable polymer prodrugs with adjustable activity from drug-initiated radical ring-opening copolymerization. Chem. Sci.2018, 9, 8291–8306.

    PubMed  PubMed Central  Google Scholar 

  4. Hagiopol, C. Copolymerization: Toward a systematic approach. Kluwer Academic/Plenum Publishers, New York, 1999. p.10.

    Google Scholar 

  5. Saini, P. Fundamentals of conjugated polymer blends, copolymers and composites: Synthesis, properties and applications. John Wiley Sons. Inc., Massachusetts, 2015. p. 11.

    Google Scholar 

  6. Rzaev, Z. M. O. Complex-radical copolymerization of N-vinyl pyrrolidone with isostructural analogs of maleic anhydride. Prog. Polym. Sci.2000, 25, 163–217.

    CAS  Google Scholar 

  7. Baskaran, D.; Muller, A. Anionic vinyl polymerization—50 Years after Michael Szwarc. Prog. Polym. Sci.2007, 32, 173–219.

    CAS  Google Scholar 

  8. Bednarek, M. Branched aliphatic polyesters by ring-opening (co)polymerization. Prog. Polym. Sci.2016, 58, 27–58.

    CAS  Google Scholar 

  9. Zhang, G. Hybrid copolymerization. Acta Polymerica Sinica (in Chinese) 2018 668–673.

    Google Scholar 

  10. Song, Q.; Hu, S.; Zhao, J.; Zhang, G. Organocatalytic copolymerization of mixed type monomers. Chinese J. Polym. Sci.2017, 35, 581–601.

    CAS  Google Scholar 

  11. Saegusa, T. Spontaneous alternating copolymerization via zwitterion intermediates. Angew. Chem. Int. Ed.1997, 1977, 826–835.

    Google Scholar 

  12. Rivas, B. L.; Canessa, G. S.; Pooley, S. A. Spontaneous copolymerization via zwitterion 1.2-methyl-2-oxazoline and succinic anhydride. Polym. Bull.1983, 9, 417–422.

    CAS  Google Scholar 

  13. Bailey, W. J.; Ni, Z.; Wu, S. R. Synthesis of poly-ɛ-caprolactone via a free radical mechanism. Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane. J. Polym. Sci. Part A: Polym. Chem.1985, 20, 3021–3030.

    Google Scholar 

  14. Sinnwell, S.; Ritter, H. Ring-opening homo-and copolymerization of a-methylene-e-caprolactone. Macromolecules2006, 39, 2804–2807.

    CAS  Google Scholar 

  15. Kanazawa, A.; Kanaoka, S.; Aoshima, S. Concurrent cationic vinyladdition and ring-opening copolymerization using B(C6F5)3 as a catalyst: Copolymerization of vinyl ethers and isobutylene oxide via crossover propagation reactions. J. Am. Chem. Soc.2013, 135, 9330–9333.

    PubMed  CAS  Google Scholar 

  16. Kanazawa, A.; Kanaoka, S.; Aoshima, S. Rational design of oxirane monomers for efficient crossover reactions in concurrent cationic vinyl-addition and ring-opening copolymerization with vinyl ethers. Macromolecules2014, 47, 6635–6644.

    CAS  Google Scholar 

  17. Kanazawa, A.; Kanda, S.; Kanaoka, S.; Aoshima, S. Alkoxyoxirane, a unique cyclic monomer: Controlled cationic homopolymerization mediated by long-lived species and copolymerization with vinyl ether via alkoxy group transfer. Macromolecules2014, 47, 8531–8540.

    CAS  Google Scholar 

  18. Kanazawa, A.; Aoshima, S. Cationic terpolymerization of vinyl ethers, oxetane, and ketones via concurrent vinyl-addition, ringopening, and carbonyl-addition mechanisms: Multiblock polymer synthesis and mechanistic investigation. Macromolecules2017, 50, 6595–6605.

    CAS  Google Scholar 

  19. Miyamae, Y.; Kanazawa, A.; Tamaso, K. I.; Morino, K.; Ogawa, R.; Aoshima, S. The influence of the substituents of oxiranes on copolymerization with vinyl ethers via concurrent cationic vinyladdition and ring-opening mechanisms. Polym. Chem.2018, 9, 404–413.

    CAS  Google Scholar 

  20. Yang, H.; Xu, J.; Pispas, S.; Zhang, G. Hybrid copolymerization of ɛ-caprolactone and methyl methacrylate. Macromolecules2012, 45, 3312–3317.

    CAS  Google Scholar 

  21. Zhang, G.; Ma, C. 2017, U. S. Pat., 9701794B2.

    Google Scholar 

  22. Yang, H.; Bai, T.; Xue, X.; Huang, W.; Chen, J.; Qian, X.; Zhang, G.; Jiang, B. A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Adv.2015, 5, 60401–60408.

    CAS  Google Scholar 

  23. Yang, H.; Bai, T.; Xue, X.; Huang, W.; Chen, J.; Qian, X.; Zhang, G.; Jiang, B. A simple route to vinyl-functionalized hyperbranched polymers: Self-condensing anionic copolymerization of allyl methacrylate and hydroxyethyl methacrylate. Polymer2015, 72, 63–68.

    CAS  Google Scholar 

  24. Yang, H.; Zhang, J.; Zuo, Y.; Song, Y.; Huang, W.; Jiang, L.; Jiang, Q.; Xue, X.; Jiang, B. Anionic hybrid copolymerization via concurrent oxa-Michael addition and ring-opening polymerizations. Macromol. Chem. Phys.2019 1900147.

    Google Scholar 

  25. Breslow, D.; Hulse, G.; Matlack, A. Synthesis of poly-β-alanine from acrylamide. A novel synthesis of β-alanine. J. Am. Chem. Soc.1957, 79, 3760–3763.

    CAS  Google Scholar 

  26. Ogata, N. The transition polymerization of acrylamide. I. On the polymerization condition and the property of polymer. B. Chem. Soc. Jpn.1960, 33, 906–912.

    CAS  Google Scholar 

  27. Saegusa, T.; Kobayashi, S.; Kimura, Y. Hydrogen-transfer polymerization of hydroxyalkyl acrylates. Macromolecule1975, 8, 950–952.

    CAS  Google Scholar 

  28. Hong, M.; Chen, E. Y. X. Proton-transfer polymerization (HTP): Converting methacrylates to polyesters by an N-heterocyclic carbene. Angew. Chem. Int. Ed.2014, 126, 12094–12100.

    Google Scholar 

  29. Matsuoka, S. I.; Namera, S.; Suzuki, M. Oxa-Michael addition polymerization of acrylates catalyzed by N-heterocyclic carbenes. Polym. Chem.2015, 6, 294–301.

    CAS  Google Scholar 

  30. Murase, T.; Matsuoka, S. I.; Suzuki, M. Hydrogen-transfer and condensation-addition polymerizations of acrylic acid. Polym. Chem.2018, 9, 2984–2990.

    CAS  Google Scholar 

  31. Roos, K.; Planes, M.; Bakkali-Hassani, C.; Mehats, J.; Vax, A.; Carlotti, S. Solvent-free anionic polymerization of acrylamide: A mechanistic study for the rapid and controlled synthesis of polyamide-3. Macromolecules2016, 49, 2039–2045.

    CAS  Google Scholar 

  32. Rozenberg, B. A. Proton-transfer anionic polymerization of vinyl monomers. Des. Monomers Polym.2004, 7, 135–150.

    CAS  Google Scholar 

  33. Boileau, S.; Illy, N. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters. Prog. Polym. Sci.2011, 36, 1132–1151.

    CAS  Google Scholar 

  34. Alamri, H.; Zhao, J.; Pahovnik, D.; Hadjichristidis, N. Phosphazenecatalyzed ring-opening polymerization of e-caprolactone: Influence of solvents and initiators. Polym. Chem.2014, 5, 5471–5478.

    CAS  Google Scholar 

  35. Zhao, J.; Alamri, H.; Hadjichristidis, N. A facile metal-free "graftingfrom" route from acrylamide-based substrate toward complex macromolecular combs. Chem. Commun.2013, 49, 7079–7081.

    CAS  Google Scholar 

  36. Zhao, J.; Pahovnik, D.; Gnanou, Y.; Hadjichristidis, N. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide Initiated by carboxylic acid. Macromolecules.2014, 47, 1693–1698.

    CAS  Google Scholar 

  37. Zhao, J.; Hadjichristidis, N. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polym. Chem.2015, 6, 2659–2668.

    CAS  Google Scholar 

  38. Hu, S.; Dai, G.; Zhao, J. Zhang, G. Ring-opening alternating copolymerization of epoxides and dihydrocoumarin catalyzed by a phosphazene superbase. Macromolecules.2016, 49, 4462–4472.

    CAS  Google Scholar 

  39. Zhang, L.; Nederberg, F.; Pratt, R. C.; Waymouth, R. M.; Hedrick, J. L.; Wade, C. G. Phosphazene bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules2007, 40, 4154–4158.

    CAS  Google Scholar 

  40. Yang, H.; Bai, T.; Xue, X.; Huang, W.; Chen, J.; Jiang, B. Synthesis of metal-free poly(p-dioxanone) by phosphazene base catalyzed ring-opening polymerization. J. Appl. Polym. Sci.2016, 133, 43030.

    Google Scholar 

  41. Isono, T.; Asai, S.; Satoh, Y.; Takaoka, T.; Tajima, K.; Kakuchi, T.; Satoh, T. Controlled/living ring-opening polymerization of glycidylamine derivatives using t-Bu-P4/alcohol initiating system leading to polyethers with pendant primary, secondary, and tertiary amino Groups. Macromolecules2015, 48, 3217–3229.

    CAS  Google Scholar 

  42. Misaka, H.; Sakai, R.; Satoh, T.; Kakuchi, T. Synthesis of high molecular weight and end-functionalized poly(styrene oxide) by living ring-opening polymerization of styrene oxide using the alcohol/phosphazene base initiating system. Macromolecules2011, 44, 9099–9107.

    CAS  Google Scholar 

  43. Yang, H.; Zuo, Y.; Zhang, J.; Song, Y.; Huang, W.; Xue, X.; Jiang, Q.; Sun, A.; Jiang, B. Phosphazene-catalyzed oxa-Michael addition click polymerization. Polym. Chem.2018, 9, 4716–4723.

    CAS  Google Scholar 

  44. Gibas, M.; Korytkowska-Walach, A. Polymerization of 2- hydroxyethyl acrylate and methacrylate via Michael-type addition. Polym. Bull.2003, 51, 17–22.

    CAS  Google Scholar 

  45. Wallach, J. A.; Huang, S. J. Copolymers of itaconic anhydride and methacrylate-terminated poly(lactic acid) macromonomers. Biomacromolecules2000 1174–179.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation for Excellent Young Scholar of Jiangsu Province (No. BK20170056), the National Natural Science Foundation of China (No. 21304010), the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Jun Yang, Wen-Yan Huang or Bi-Biao Jiang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HJ., Chai, CQ., Zuo, YK. et al. Hybrid Copolymerization via the Combination of Proton Transfer and Ring-opening Polymerization. Chin J Polym Sci 38, 231–239 (2020). https://doi.org/10.1007/s10118-020-2341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2341-x

Keywords

Navigation