Log in

Composite Quantile Estimation for Kink Model with Longitudinal Data

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Kink model is developed to analyze the data where the regression function is two-stage piecewise linear with respect to the threshold covariate but continuous at an unknown kink point. In quantile regression for longitudinal data, kink point where the kink effect happens is often assumed to be heterogeneous across different quantiles. However, the kink point tends to be the same across different quantiles, especially in a region of neighboring quantile levels. Incorporating such homogeneity information could increase the estimation efficiency of the common kink point. In this paper, we propose a composite quantile estimation approach for the common kink point by combining information from multiple neighboring quantiles. Asymptotic normality of the proposed estimator is studied. In addition, we also develop a sup-likelihood-ratio test to check the existence of the kink effect at a given quantile level. A test-inversion confidence interval for the common kink point is also developed based on the quantile rank score test. The simulation studies show that the proposed composite kink estimator is more efficient than the single quantile regression estimator. We also illustrate the proposed method via an application to a longitudinal data set on blood pressure and body mass index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

References

  1. Bondell, H. D., Reich, B. J., Wang, H.: Noncrossing quantile regression curve estimation. Biometrika, 97, 825–838 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc., 96, 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fong, Y., Di, C., Huang, Y., et al.: Model-robust inference for continuous threshold regression models. Biometrics, 73, 452–462 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Galvao, A. F., Kato, K., Montes-Rojas, G., et al.: Testing linearity against threshold effects: uniform inference in quantile regression. Ann. Inst. Statist. Math., 66, 413–439 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hall, P., Sheather, S. J.: On the distribution of a studentized quantile. J. R. Stat. Soc. Ser. B Stat. Methodol., 50, 381–391 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Hansen, B. E.: Regression kink with an unknown threshold. J. Bus. Econom. Statist., 35, 228–240 (2017)

    Article  MathSciNet  Google Scholar 

  7. He, J., Klag, M. J., Whelton, P. K., et al.: Body mass and blood pressure in a lean population in southwestern china. American Journal of Epidemiology, 139, 380–389 (1994)

    Article  Google Scholar 

  8. He, X., Shao, Q.-M.: A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs. Ann. Statist., 24, 2608–2630 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, X., Shao, Q.-M.: On parameters of increasing dimensions. J. Multivariate Anal., 73, 120–135 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hendricks, W., Koenker, R.: Hierarchical spline models for conditional quantiles and the demand for electricity. J. Amer. Statist. Assoc., 87, 58–68 (1992)

    Article  Google Scholar 

  11. Jiang, L., Bondell, H. D., Wang, H. J.: Interquantile shrinkage and variable selection in quantile regression. Comput. Statist. Data Anal., 69, 208–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, L., Wang, H. J., Bondell, H. D.: Interquantile shrinkage in regression models. J. Comput. Graph. Statist., 22, 970–986 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kai, B., Li, R., Zou, H.: Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression. J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 49–69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kerry, S. M., Micah, F. B., Plange-Rhule, J., et al.: Blood pressure and body mass index in lean rural and semi-urban subjects in west africa. Journal of Hypertension, 23, 1645–1651 (2005)

    Article  Google Scholar 

  15. Koenker, R.: Quantile regression for longitudinal data. J. Multivariate Anal., 91, 74–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, J., Sun, Y., Wang, H.: Spatial cluster detection with threshold quantile regression. Environmetrics, 32, e2696 (2021)

    Article  MathSciNet  Google Scholar 

  17. Lee, S., Seo, M. H., Shin, Y.: Testing for threshold effects in regression models. J. Amer. Statist. Assoc., 106, 220–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leng, C. Zhang, W.: Smoothing combined estimating equations in quantile regression for longitudinal data. Stat. Comput., 24, 123–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, C., Dowling, N. M., Chappell, R.: Quantile regression with a change-point model for longitudinal data: An application to the study of cognitive changes in preclinical Alzheimer’s disease. Biometrics, 71, 625–635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., Wei, Y., Chappell, R., et al.: Bent line quantile regression with application to an allometric study of land mammals speed and mass. Biometrics, 67, 242–249 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang, C. Y., Leng, C.: Empirical likelihood and quantile regression in longitudinal data analysis. Biometrika, 98, 1001–1006 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, Y., Wang, Y., Li, J., et al.: Improving estimation efficiency in quantile regression with longitudinal data. J. Statist. Plann. Inference, 165, 38–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tesfaye, F., Nawi, N., Van Minh, H., et al.: Association between body mass index and blood pressure across three populations in africa and asia. Journal of Human Hypertension, 21, 28–37 (2007)

    Article  Google Scholar 

  24. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Wang, H. J., Feng, X., Dong, C.: Copula-based quantile regression for longitudinal data. Statist. Sinica, 29, 245–264 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, L., Wang, H. J., Zhu, Z.: Testing for change points due to a covariate threshold in quantile regression. Statist. Sinica, 24, 1859–1877 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, L., Wang, H. J., Zhu, Z.: Composite change point estimation for bent line quantile regression. Ann. Inst. Statist. Math., 69, 145–168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhong, W., Wan, C., Zhang, W.: Estimation and inference for multi-kink quantile regression. J. Bus. Econom. Statist., 40, 1123–1139 (2022)

    Article  MathSciNet  Google Scholar 

  29. Zou, H., Yuan, M.: Composite quantile regression and the oracle model selection theory. Ann. Statist., 36, 1108–1126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Editor, the Associate Editor and three referees for their encouragements and insightful comments which have substantially improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhong.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 11922117, 11771361) and Fujian Provincial Science Fund for Distinguished Young Scholars (Grant No. 2019J06004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Zhong, W. & Fang, Y. Composite Quantile Estimation for Kink Model with Longitudinal Data. Acta. Math. Sin.-English Ser. 39, 412–438 (2023). https://doi.org/10.1007/s10114-023-1557-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-1557-4

Keywords

MR(2010) Subject Classification

Navigation