Log in

An Inertial Semi-forward-reflected-backward Splitting and Its Application

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Inertial methods play a vital role in accelerating the convergence speed of optimization algorithms. This work is concerned with an inertial semi-forward-reflected-backward splitting algorithm of approaching the solution of sum of a maximally monotone operator, a cocoercive operator and a monotone-Lipschitz continuous operator. The theoretical convergence properties of the proposed iterative algorithm are also presented under mild conditions. More importantly, we use an adaptive stepsize rule in our algorithm to avoid calculating Lipschitz constant, which is generally unknown or difficult to estimate in practical applications. In addition, a large class of composite monotone inclusion problem involving mixtures of linearly composed and parallel-sum type monotone operators is solved by combining the primal-dual approach and our proposed algorithm. As a direct application, the obtained inertial algorithm is exploited to composite convex optimization problem and some numerical experiments on image deblurring problem are also investigated to demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dam**. Set-Valued Anal., 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H. H., Combettes, P. L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Second Edition, Springer, London, 2017

    Book  MATH  Google Scholar 

  3. Boţ, R. I.: Conjugate Duality in Convex Optimization. Lecture Notes in Econom. and Math. Systems Vol. 637, Springer, Berlin, 2010

    MATH  Google Scholar 

  4. Boţ, R. I., Csetnek, E. R.: An inertial alternating direction method of multipliers. Minimax Theory Appl., 1, 29–49 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Boţ, R. I., Csetnek, E. R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms, 71, 519–540 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boţ, R. I., Csetnek, E. R., Hendrich, C.: Inertial Douglas—Rachford splitting for monotone inclusion problems. Appl. Math. Comput., 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Boţ, R. I., Sedlmayer, M., Vuong, P. T.: A relaxed inertial forward-backward-forward algorithm for solving monotone inclusions with application to GANs. ar**v:2003.07886v2 (2020)

  8. Briceño-Arias, L. M., Davis, D.: Forward-backward-half forward algorithm for solving monotone inclusions. SIAM J. Optim., 28, 2839–2871 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bricenño-Arias, L. M.: Forward-Douglas—Rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization, 64, 1239–1261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems, 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, C. H., Chan, R. H., Ma, S. Q., et al.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci., 8, 2239–2267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Combettes, P. L., Pesquet, J. C.: A Douglas—Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE JSTSP, 1, 564–574 (2007)

    Google Scholar 

  13. Combettes, P. L., Pesquet, J. C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal., 20, 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Combettes, P. L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization, 53, 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Combettes, P. L., Wajs, V. R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul., 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl., 158, 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cui, F. Y., Tang, Y. C., Yang, Y.: An inertial three-operator splitting algorithm with applications to image inpainting. Appl. Set-Valued Anal. Optim., 1, 113–134 (2019)

    Google Scholar 

  18. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math., 57, 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Davis, D., Yin, W. T.: A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal., 25, 829–858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res., 10, 2899–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Goldstein, A. A.: Convex programming in Hilbert space. Bull. Amer. Math. Soc., 70, 709–710 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions, P. L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal., 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lorenz, D. A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vision, 51, 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Malitsky, Y., Tam, M. K.: A forward-backward splitting method for monotone inclusions without cocoercivity. SIAM J. Optim., 30, 1451–1472 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Micchelli, C. A., Shen, L. X., Xu, Y. S.: Proximity algorithms for image models: denoising. Inverse Problems, 27, 045009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math., 155, 447–454 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nesterov, Y.: A method for solving the convex programming problem with convergence rate O(1/k2). Dokl. Akad. Nauk SSSR, 269, 543–547 (1983)

    MathSciNet  Google Scholar 

  28. Padcharoen, A., Kitkuan, D., Kumam, W., et al.: Tseng methods with inertial for solving inclusion problems and application to image deblurring and image recovery problems. Comput. Math. Methods., 3(3), Paper No. e1088, 14 pp. (2020)

  29. Passty, G. B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl., 72, 383–390 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Polyak, B. T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys., 4, 1–17 (1964)

    Article  Google Scholar 

  31. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci., 6, 1199–1226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Raguet, H., Landrieu, L.: Preconditioning of a generalized forward-backward splitting and application to optimization on graphs. SIAM J. Imaging Sci., 8, 2706–2739 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rieger, J., Tam, M. K.: Backward-forward-reflected-backward splitting for three operator monotone inclusions. Appl. Math. Comput., 381, 125248 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Ryu, E. K.: Uniqueness of DRS as the 2 operator resolvent-splitting and impossibility of 3 operator resolvent-splitting. Math. Program., 182, 233–273 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ryu, E. K., Vũ, B. C.: Finding the forward-Douglas—Rachford-forward method. J. Optim. Theory Appl., 184, 858–876 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tang, Y. C.: A primal dual fixed point algorithm for constrained optimization problems with applications to image reconstruction. In: Medical Imaging 2015: Image Processing, Proc. SPIE, Vol. 9413, SPIE, Washington, 2015, 94131W, 9pp.

    Google Scholar 

  37. Tang, Y. C., Wu, G. R., Zhu, C. X.: A first-order splitting method for solving a large-scale composite convex optimization problem. J. Comput. Math., 37, 668–690 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tseng, P.: A modified forward-backward splitting method for maximal monotone map**s. SIAM J. Control Optim., 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vũ, B. C.: A splitting algorithm for coupled system of primal-dual monotone inclusions. J. Optim. Theory Appl., 164, 993–1025 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vũ, B. C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math., 38, 667–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Tang, Y. C.: An inertial alternating direction method of multipliers for solving a two-block separable convex minimization problem. J. Math. Res. Appl., 41, 204–220 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput., 76, 1698–1717 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zong, C. X., Tang, Y. C., Cho, Y. J.: Convergence analysis of an inexact three-operator splitting algorithm. Symmetry, 10, 563 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank deeply the referees for their time and comments concerned with this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Feng Zhang.

Additional information

Supported by the National Natural Science Foundations of China (Grant Nos. 11771193, 11661056 and 12061045)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, C.X., Tang, Y.C. & Zhang, G.F. An Inertial Semi-forward-reflected-backward Splitting and Its Application. Acta. Math. Sin.-English Ser. 38, 443–464 (2022). https://doi.org/10.1007/s10114-022-0649-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-0649-x

Keywords

MR(2010) Subject Classification

Navigation