Log in

In vitro comparative study between adhesion forces obtained on zirconia ceramic micromechanically treated with femtosecond laser (1027 nm), carbon dioxide laser (10,600 nm), and aluminum-oxide particles

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Conventional surface roughening treatments used for silica-based ceramics in order to improve subsequent adhesion become unreliable for zirconia ceramics. Laser conditioning can be a good alternative. The purpose of this in vitro study was to compare conventional (macro) shear bond strength (SBS) values obtained between resin composite and zirconium oxide ceramic samples grouped according to different micromechanical treatments received, and examine differences in surface roughness. One-hundred and fifty disks of sintered zirconia were randomly divided into 5 groups and roughened as follows: (1) Group NOT, no surface treatment; (2) Group APA, abraded with 50-μm aluminum-oxide (Al2O3) particles; (3) Group TBS, abraded with 30-μm aluminum-oxide particles covered with silica; (4) Group CO2, irradiated with a CO2 laser which emitted in continuous wave mode at 3 W of power; and (5) Group FEM, irradiated with a pulsed femtosecond laser, with an incident energy of 10 μJ, a frequency of 1000 Hz, and a fluence of 1.3 kJ/cm2. All surfaces were treated with a MDP-containing adhesive/silane coupling agent mixture upon which were prepared and light polymerized composite resin cylinders. Shear bond strength was measured and samples were observed by scanning electron microscopy (SEM). Statistically significant differences (p < 0.05) were found among all groups, except between CO2 and FEM, which showed the highest adhesion values (15.12 ± 2.35 MPa and 16.03 ± 2.73 MPa). SEM revealed differences in surface patterns. CO2 laser irradiation can be an alternative to sandblasting, although it could also weaken the ceramic. Suitable surface patterns on zirconia ceramics can be obtained with ultrashort pulsed radiation emitted by a pulsed femtosecond laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blatz MB, Sadan A, Kern M (2003) Resin-ceramic bonding: a review of the literature. J Prosthet Dent 89:268–274. https://doi.org/10.1067/mpr.2003.50

    Article  CAS  PubMed  Google Scholar 

  2. Cavalcanti AN, Foxton RM, Watson TF, Oliveira MT, Giannini M, Marchi GM (2009) Y-TZP ceramics: key concepts for clinical application. Oper Dent 34:344–351. https://doi.org/10.1016/j.prosdent.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  3. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R (2019) Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health 19:134. https://doi.org/10.1186/s12903-019-0838-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen YW, Moussi J, Drury JL, Wataha JC (2016) Zirconia in biomedical applications. Expert Rev Med Devices 13:945–963. https://doi.org/10.1080/17434440.2016.1230017

    Article  CAS  PubMed  Google Scholar 

  5. Guess PC, Att W, Strub JR (2012) Zirconia in fixed implant prosthodontics. Clin Implant Dent Relat Res 14:633–645. https://doi.org/10.1111/j.1708-8208.2010.00317.x

    Article  PubMed  Google Scholar 

  6. Russo DS, Cinelli F, Sarti C, Giachetti L (2019) Adhesion to zirconia: a systematic review of current conditioning methods and bonding materials. Dent J (Basel) 7:74. https://doi.org/10.3390/dj7030074

    Article  Google Scholar 

  7. Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T (2013) Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci 28:259–266. https://doi.org/10.1007/s10103-012-1136-x

    Article  PubMed  Google Scholar 

  8. Marshall SJ, Bayne SC, Baier R, Tomsia AP, Marshall GW (2010) A review of adhesion science. Dent Mater 26:e11–e16. https://doi.org/10.1016/j.dental.2009.11.157

    Article  CAS  PubMed  Google Scholar 

  9. Le M, Larsson C, Papia E (2019) Bond strength between MDP-based cement and translucent zirconia. Dent Mater J 38:480–489. https://doi.org/10.4012/dmj.2018-194

    Article  CAS  PubMed  Google Scholar 

  10. Yenisey M, Dede DÖ, Rona N (2016) Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics. J Prosthodont Res 60:36–46. https://doi.org/10.1016/j.jpor.2015.09.001

    Article  PubMed  Google Scholar 

  11. Souza ROA, Valandro LF, Melo RM, Machado JPB, Bottino MA, Özcan M (2013) Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater 26:155–163. https://doi.org/10.1016/j.jmbbm.2013.04.018

    Article  CAS  PubMed  Google Scholar 

  12. Özcan M (2013) Air abrasion of zirconia resin-bonded fixed dental prostheses prior to adhesive cementation: why and how? J Adhes Dent 15:394. https://doi.org/10.3290/j.jad.a30476

    Article  PubMed  Google Scholar 

  13. Zhang Y, Lawn BR, Rekow ED, Thompson VP (2004) Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater 71:381–386. https://doi.org/10.1002/jbm.b.30097

    Article  CAS  PubMed  Google Scholar 

  14. Ahrari F, Boruziniat A, Alirezaei M (2016) Surface treatment with a fractional CO2 laser enhances shear bond strength of resin cement to zirconia. Laser Ther 25:19–26. https://doi.org/10.5978/islsm.16-OR-01

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abdullah AO, Yu H, Pollington S, Muhammed FK, Xudong S, Liu Y (2020) Effect of repeated laser surface treatments on shear bond strength between zirconia and veneering ceramic. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2019.10.007

    Article  PubMed  Google Scholar 

  16. Kasraei S, Rezaei-Soufi L, Heidari B, Vafaee F (2014) Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic. Restor Dent Endod 39:296–302. https://doi.org/10.5395/rde.2014.39.4.296

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ural C, Kalyoncuoǧlu E, Balkaya V (2012) The effect of different power outputs of carbon dioxide laser on bonding between zirconia ceramic surface and resin cement. Acta Odontol Scand 70:541–546. https://doi.org/10.3109/00016357.2011.600718

    Article  CAS  PubMed  Google Scholar 

  18. Ahrari F, Heravi F, Hosseini M (2013) CO2 laser conditioning of porcelain surfaces for bonding metal orthodontic brackets. Lasers Med Sci 28:1091–1097. https://doi.org/10.1007/s10103-012-1152-x

    Article  PubMed  Google Scholar 

  19. Liu D, Matinlinna JP, Tsoi JKH, Pow EHN, Miyazaki T, Shibata Y, Kan CW (2013) A new modified laser pretreatment for porcelain zirconia bonding. Dent Mater 29:559–565. https://doi.org/10.1016/j.dental.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  20. Dede DÖ, Yenisey M, Rona N, Öngöz Dede F (2016) Effects of laser treatment on the bond strength of differently sintered zirconia ceramics. Photomed Laser Surg 34:276–283. https://doi.org/10.1089/pho.2015.4064

    Article  CAS  PubMed  Google Scholar 

  21. Martins FV, Mattos CT, Cordeiro WJB, Fonseca EM (2019) Evaluation of zirconia surface roughness after aluminum oxide airborne-particle abrasion and the erbium-YAG, neodymium-doped YAG, or CO2 lasers: a systematic review and meta-analysis. J Prosthet Dent 121:895-903.e2. https://doi.org/10.1016/j.prosdent.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  22. Paranhos MPG, Burnett LH, Magne P (2011) Effect Of Nd:YAG laser and CO2 laser treatment on the resin bond strength to zirconia ceramic. Quintessence Int 42:79–89

    PubMed  Google Scholar 

  23. Saraç D, Saraç YS, Külünk S, Erkoçak A (2013) Effect of various surface treatments on the bond strength of porcelain repair. Int J Periodontics Restor Dent 33:e120-126. https://doi.org/10.11607/prd.1362

    Article  Google Scholar 

  24. Nikzadjamnani S, Zarrati S, Rostamzadeh M (2017) Microtensile bond strength between zirconia core and veneering porcelain after different surface treatments. J Dent (Tehran) 14:303–312

    PubMed  Google Scholar 

  25. Niemz MH (1995) Cavity preparation with the Nd:YLF picosecond laser. J Dent Res 74:1194–1199. https://doi.org/10.1177/00220345950740050801

    Article  CAS  PubMed  Google Scholar 

  26. Petrov T, Pecheva E, Walmsley AD, Dimov S (2018) Femtosecond laser ablation of dentin and enamel for fast and more precise dental cavity preparation. Mater Sci Eng C Mater Biol Appl 90:433–438. https://doi.org/10.1016/j.msec.2018.04.070

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Lechuga M, Utéza O, Sanner N, Grojo D (2020) Evidencing the nonlinearity independence of resolution in femtosecond laser ablation. Opt Lett 45:952–955. https://doi.org/10.1364/OL.382610

    Article  CAS  PubMed  Google Scholar 

  28. Sotillo B, Bharadwaj V, Hadden JP, Sakakura M, Chiappini A, Fernandez TT et al (2016) Diamond photonics platform enabled by femtosecond laser writing. Sci Rep 6:35566. https://doi.org/10.1038/srep35566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prieto MV, Gomes ALC, Martín JM, Lorenzo AA, Mato VS, Martínez AA (2016) The effect of femtosecond laser treatment on the effectiveness of resin-zirconia adhesive: an in vitro study. J lasers Med Sci 7:214–219. https://doi.org/10.15171/jlms.2016.38

    Article  Google Scholar 

  30. Tzanakakis EGC, Beketova A, Papadopoulou L, Kontonasaki E, Tzoutzas IG (2021) Novel femto laser patterning of high translucent zirconia as an alternative to conventional particle abrasion. Dent J (Basel) 9:20. https://doi.org/10.3390/dj9020020

    Article  PubMed  Google Scholar 

  31. Kara O, Kara HB, Tobi ES, Ozturk AN, Kilic HS (2015) Effect of various lasers on the bond strength of two zirconia ceramics. Photomed Laser Surg 33:69–76. https://doi.org/10.1089/pho.2014.3841

    Article  CAS  PubMed  Google Scholar 

  32. García-Sanz V, Paredes-Gallardo V, Bellot-Arcís C, Martínez-León L, Torres-Mendieta R, Montero J, Albaladejo A (2019) Femtosecond laser settings for optimal bracket bonding to zirconia. Lasers Med Sci 34:297–304. https://doi.org/10.1007/s10103-018-2589-3

    Article  PubMed  Google Scholar 

  33. Akpinar YZ, Kepceoglu A, Yavuz T, Aslan MA, Demirtag Z, Kılıc HS et al (2015) Effect of femtosecond laser beam angle on bond strength of zirconia-resin cement. Lasers Med Sci 30:2123–2128. https://doi.org/10.1007/s10103-015-1762-1

    Article  PubMed  Google Scholar 

  34. Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y et al (2017) Chemical interaction mechanism of 10-MDP with zirconia. Sci Reports 7:1–7. https://doi.org/10.1038/srep45563

    Article  CAS  Google Scholar 

  35. Inokoshi M, De Munck J, Minakuchi S, Van Meerbeek B (2014) Meta-analysis of bonding effectiveness to zirconia ceramics. J Dent Res 93:329–334. https://doi.org/10.1177/0022034514524228

    Article  CAS  PubMed  Google Scholar 

  36. Da Silva EM, Miragaya L, Sabrosa CE, Maia LC (2014) Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water. J Prosthet Dent 112:568–575. https://doi.org/10.1016/j.prosdent.2013.12.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the 3M ESPE for their materials and wish to express their gratitude to Dr. Pere Serra and Dr. Juan Marcos Fernandez Pradas, from the Department of Applied Physics, Universitat de Barcelona (UB), for their essential collaboration in the use of the femtosecond laser.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis, investigation, writing—original draft, review, and editing: Ignasi Piulachs; conceptualization, resources, validation: Lluís Giner; resources, investigation, project administration: Antoni España and Josep Arnabat; resources, writing—review and editing: Camilo Florian.

Corresponding author

Correspondence to Ignasi Piulachs.

Ethics declarations

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piulachs, I., Giner-Tarrida, L., España-Tost, A. et al. In vitro comparative study between adhesion forces obtained on zirconia ceramic micromechanically treated with femtosecond laser (1027 nm), carbon dioxide laser (10,600 nm), and aluminum-oxide particles. Lasers Med Sci 38, 194 (2023). https://doi.org/10.1007/s10103-023-03859-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03859-2

Keywords

Navigation