Log in

Industrial-scale bioremediation of a hydrocarbon-contaminated aquifer’s sediment at the location of a heating plant, Belgrade, Serbia

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide insight into research and activities of in situ remediation to remove petroleum hydrocarbon pollutants from a contaminated aquifer’s sediment, located near two radial collector wells of a water supply system. It was decided that the most appropriate method for remediation of this aquifer’s sediment is in situ bioremediation because it is clean, efficient and sustainable technology. Before the start of the bioremediation process, it was necessary to isolate and cultivate the microorganisms present at the contamination site, so they could be later applied in the bioremediation process. The samples before and after the bioremediation were studied using both GC and GC × GC–MS to determine how the concentrations of contaminants changed over time. Additionally, in this paper, a spatiotemporal representation of the change in hydrocarbon content by depth within the zone of the highest contamination over time is shown. After 12 months of bioremediation, the hydrocarbon content in the samples decreased by 82.0%, and based on GCxGC-MS analysis, the order of degradation of various hydrocarbon groups was as follows: steranes (99.6%), isoprenoids (98.4%), benzene derivatives (98.4%), alkanes (97.2%), and terpenes (49.3%). The exponential decay model showed the greatest decomposition rate of hydrocarbons occurred at depths of 8–10 m, with an average decay constant of 0.227, independent of the initial concentration of hydrocarbons. To the best of our knowledge, to date, the described approach has not been applied to an aquifer (the simultaneous treatment of groundwater and its associated sediment layers).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant no. 451-03-47/2023-01/200026 and Grant no. 451-03-47/2023-01/200168).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and analysis were performed by ML, JA, MI, GGC and AŽ Data collection and modeling were performed by SMK and SM The first draft of the manuscript was written by ML All authors commented on previous versions of the manuscript. Supervision was performed by JA, VB and MMV. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jelena Avdalović.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 625 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukić, M., Avdalović, J., Gojgić-Cvijović, G. et al. Industrial-scale bioremediation of a hydrocarbon-contaminated aquifer’s sediment at the location of a heating plant, Belgrade, Serbia. Clean Techn Environ Policy 26, 1785–1798 (2024). https://doi.org/10.1007/s10098-023-02724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-023-02724-8

Keywords

Navigation