Log in

Detection of optrA-positive enterococci clinical isolates in Belgium

  • Letter to the Editor
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bi R, Qin T, Fan W, Ma P, Gu B (2017) The emerging problem of linezolid-resistant enterococcus. J Glob Antimicrob Resist 13:11–19

  2. Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ, Mendes RE (2015) Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 59(10):6256–6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Candela T, Marvaud JC, Nguyen TK, Lambert T (2017) A cfr-like gene cfr(C) conferring linezolid resistance is common in Clostridium difficile. Int J Antimicrob Agents 50(3):496–500

    Article  CAS  PubMed  Google Scholar 

  4. Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q (2017) Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother 72(6):1581–1588

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Fessler AT, Wu C, Yu H, Deng X, **a X, Shen J (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70(8):2182–2190

    Article  CAS  PubMed  Google Scholar 

  6. Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM, Earls MR, Boyle B, O'Connell B, Brennan GI, Shore AC (2017) Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 72(12):3252–3257

    Article  CAS  PubMed  Google Scholar 

  7. Sun C, Zhang P, Ji X, Fan R, Chen B, Wang Y, Schwarz S, Wu C (2018) Presence and molecular characteristics of oxazolidinone resistance in staphylococci from household animals in rural China. J Antimicrob Chemother 73(5):1194–1200

  8. Antonelli A, D’Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, Varaldo PE, Rossolini GM (2018) Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother. https://doi.org/10.1093/jac/dky088

  9. Brenciani A, Fioriti S, Morroni G, Cucco L, Morelli A, Pezzotti G, Paniccia M, Antonelli A, Magistrali CF, Rossolini GM, Giovanetti E (2018) Detection in Italy of a porcine Enterococcus faecium isolate carrying the novel phenicol-oxazolidinone-tetracycline resistance gene poxtA. J Antimicrob Chemother. https://doi.org/10.1093/jac/dky505

  10. Cui L, Wang Y, Lv Y, Wang S, Song Y, Li Y, Liu J, Xue F, Yang W, Zhang J (2016) Nationwide surveillance of novel oxazolidinone resistance gene optrA in enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother 60(12):7490–7493

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Valentin T, Leitner E, Valentin A, Krause R, Hopkins K, Meunier D, Woodford N, Zollner-Schwetz I (2016) Clinical Enterococcus faecalis isolate carrying the novel oxazolidinone resistance gene optrA identified in Austria. ECCMID, Amsterdam, The Netherlands, p PLB46B

    Google Scholar 

  12. Vorobieva V, Roer L, Justesen US, Hansen F, Frimodt-Moller N, Hasman H, Hammerum AM (2017) Detection of the optrA gene in a clinical ST16 Enterococcus faecalis isolate in Denmark. J Glob Antimicrob Resist 10:12–13

    Article  PubMed  Google Scholar 

  13. Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA, Flamm RK (2018) ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother. https://doi.org/10.1093/jac/dky099

  14. Bender JK, Fleige C, Lange D, Klare I, Werner G (2018) Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates. Int J Antimicrob Agents 52(6):819–827

    Article  CAS  PubMed  Google Scholar 

  15. Brenciani A, Morroni G, Vincenzi C, Manso E, Mingoia M, Giovanetti E, Varaldo PE (2016) Detection in Italy of two clinical Enterococcus faecium isolates carrying both the oxazolidinone and phenicol resistance gene optrA and a silent multiresistance gene cfr. J Antimicrob Chemother 71(4):1118–1119

    Article  CAS  PubMed  Google Scholar 

  16. Morroni G, Brenciani A, Antonelli A, D'Andrea MM, Di Pilato V, Fioriti S, Mingoia M, Vignaroli C, Cirioni O, Biavasco F, Varaldo PE, Rossolini GM, Giovanetti E (2018) Characterization of a multiresistance plasmid carrying the optrA and cfr resistance genes from an Enterococcus faecium clinical isolate. Front Microbiol 9:2189

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gawryszewska I, Zabicka D, Hryniewicz W, Sadowy E (2017) Linezolid-resistant enterococci in polish hospitals: species, clonality and determinants of linezolid resistance. Eur J Clin Microbiol Infect Dis 36(7):1279–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Camara J, Camoez M, Tubau F, Pujol M, Ayats J, Ardanuy C, Dominguez MA (2019) Detection of the novel optrA gene among linezolid-resistant enterococci in Barcelona, Spain. Microb Drug Resist 25(1):87–93

    Article  CAS  PubMed  Google Scholar 

  19. Deshpande LM, Castanheira M, Flamm RK, Mendes RE (2018) Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY antimicrobial surveillance program. J Antimicrob Chemother 73(9):2314–2322

  20. HPS (2016) Oxazolidinone-resistance due to optrA in Enterococcus faecalis. HPS Weekly Rep 50(29). Available in: https://www.hps.scot.nhs.uk/haiic/amr/wrdetail.aspx?id=68781&wrtype=2. Accessed 2018

  21. Loens K, Matheeussen V, Verlinden A, Margareta Ieven M, Yusuf E, Xavier BB, Malhotra-Kumar S, Goossens H (2017) Rare mechanisms of resistance in Belgian enterococci identified by WGS. 27th European Congress Of Clinical Microbiology And Infectious Diseases, Vienna, Austria, p P1376

  22. EUCAST (2018) Breakpoint tables for interpretation of MICs and zone diameters, Version 8.0

  23. Kehrenberg C, Schwarz S (2006) Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 50(4):1156–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MLST E. faecalis database, http://efaecalis.mlst.net. Accessed Dec 2018

  25. MLST E. faecium database, http://efaecium.mlst.net. Accessed Dec 2018

  26. Enterococcus faecalis MLST website. University of Oxford, https://pubmlst.org/efaecalis. Accessed Dec 2018

  27. Ben Said L, Klibi N, Lozano C, Dziri R, Ben Slama K, Boudabous A, Torres C (2015) Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia. Sci Total Environ 530-531:11–17

    Article  CAS  PubMed  Google Scholar 

  28. He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Fessler AT, Zhang R, Wu C, Shen J, Wang Y (2016) Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 71(6):1466–1473

    Article  CAS  PubMed  Google Scholar 

  29. Willems RJ, Hanage WP, Bessen DE, Feil EJ (2011) Population biology of gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):872–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Veterinary and Agrochemical Research Centre (CODA-CERVA, Belgium), the National Reference Centre for Staphylococci and Enterococci of the Institute Robert Koch (Germany), the Nation Food Institute of the Technical University of Denmark (Denmark), the “Centre National de Référence des Staphylocoques” of “Hospices Civils de Lyon” (France) and the University of Florence (Italy) for the supply of positive control strains for this study.

Financial support

This study was supported by internal funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angeles Argudín.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argudín, M.A., Youzaga, S., Dodémont, M. et al. Detection of optrA-positive enterococci clinical isolates in Belgium. Eur J Clin Microbiol Infect Dis 38, 985–987 (2019). https://doi.org/10.1007/s10096-019-03504-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03504-3

Navigation