Log in

Riemannian conjugate gradient methods for computing the extreme eigenvalues of symmetric tensors

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, we propose two kinds of Riemannian conjugate gradient methods for computing the extreme eigenvalues of even order symmetric tensors. One is a sufficient descent Dai–Yuan type conjugate gradient method, and another is Zhu’s Riemannian nonmonotone conjugate gradient method. The global convergence of two proposed algorithms can be guaranteed, respectively. Numerical results are reported to demonstrate the feasibility and efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Absil, P., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Absil, P., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  3. Bader, B., Kolda, T.: Algorithm 862: Matlab tensor classes for fast algorithm prototy**. ACM Trans. Math. Softw. 32, 635–653 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMAJ. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)

    Article  MATH  Google Scholar 

  6. Chang, K., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350(1), 416–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, K., Pearson, K., Zhang, T.: Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438(11), 4166–4182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, J., Chen, Y., Qi, L.: Computing eigenvalues of large scale sparse tensors arising from a hypergraph. J. Sci. Comput. 38, A3618–A3643 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Chang, J., Qi, L.: Computing the p-spectral radii of uniform hypergraphs with applications. J. Sci. Comput. 75, 1–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37, 290–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Qi, L., Wang, Q.: Computing extreme eigenvalues of large scale Hankel tensors. J. Sci. Comput. 68, 716–738 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Y., Chang, J.: A trust region algorithm for computing extreme eigenvalues of tensors. Numer. Algebra 10(4), 475–485 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Dai, Y., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dai, Y.: New properties of a nonlinear conjugate gradient method. Numer. Math. 89(1), 83–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dai, Y.: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci. Complex 15, 139–145 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Dai, Y.: A positive BB-like stepsize and an extension for symmetric linear systems. In: Workshop on Optimization for Modern Computation, p 160 (2014)

  18. Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36(3), 1073–1099 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding, W., Qi, L., Wei, Y.: Fast Hankel tensor-vector product and its application to exponential data fitting. Numer. Linear Algebra Appl. 22, 814–832 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Edelman, A., Arias, T., Smith, S.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, L.: An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer. Algebra Control Optim. 3, 583–599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hillar, C., Lim, L.: Most tensor problems are NP-hard. J. ACM 60(45), 1–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, S., Qi, L.: The E-eigenvectors of tensors. Linear Multilinear Algebra 62(10), 1388–1402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, X., Jian, J.: A sufficient descent Dai-Yuan type nonlinear conjugate gradient method for unconstrained optimization problems. Nonlinear Dyn. 72(1–2), 101–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, B., Dai, Y.: A framework of constraint preserving update schemes for optimization on Stiefel manifold. Math. Program 153, 535–575 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kolda, T., Mayo, J.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kolda, T., Mayo, J.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563–1581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lim, L.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of 1st IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, pp. 129-132 (2005)

  30. Li, G., Qi, L., Yu, G.: The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20(6), 1001–1029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, X., Wen, J.: Computing Z-eigenvalue of Hankel Tensors. In:16-th International Computer Conference on Wavelet Active Media Technology and Information Processing, IEEE, pp. 277–282 (2019)

  32. Li, J., Li, W., Vong, S., et al.: A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. J. Sci. Comput. 82(3), 1–43 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nie, J., Zhang, X.: Real eigenvalues of nonsymmetric tensors. Comput. Optim. Appl. 70(1), 1–32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31(3), 1090–1099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symbol. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qi, L., Sun, W., Wang, Y.: Numerical multilinear algebra and its applications. Front. Math. China 2, 501–526 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  38. Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)

    Book  MATH  Google Scholar 

  39. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sato, H., Iwai, T.: A new, globally convergent Riemannian conjugate gradient method. Optimization 64, 1011–1031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sato, H.: A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions. Comput. Optim. Appl. 64(1), 101–118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sato, H.: Riemannian Optimization and Its Applications. Springer Nature, Berlin (2021)

    Book  MATH  Google Scholar 

  43. Sato, H.: Riemannian conjugate gradient methods: General framework and specific algorithms with convergence analyses (2021). ar**v preprint ar**v:2112.02572

  44. Song, Y., Qi, L.: Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program 142, 397–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, G., Yu, Z., Xu, Y., et al.: An adaptive gradient method for computing generalized tensor eigenpairs. Comput. Optim. Appl. 65, 781–797 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu, X.: A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Comput. Optim. Appl. 67, 73–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two reviewers for their constructive comments which lead to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundations of China (12071159, U1811464) .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Yq., Li, W. Riemannian conjugate gradient methods for computing the extreme eigenvalues of symmetric tensors. Calcolo 59, 27 (2022). https://doi.org/10.1007/s10092-022-00471-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-022-00471-8

Keywords

Navigation