Log in

Comparative efficacy of different noninvasive brain stimulation protocols on upper-extremity motor function and activities of daily living after stroke: a systematic review and network meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The objectives of the study were to systematically evaluate the rehabilitation effect of noninvasive brain stimulation (NIBS) on upper extremity motor function and activities of daily living in stroke patients and to prioritize various stimulation protocols for reliable evidence-based medical recommendations in patients with upper extremity motor dysfunction after stroke. Web of Science, PubMed, Embase, Cochrane Library, CNKI, Wanfang, VIP, and CBM were searched to collect all randomized controlled trials (RCTs) of NIBS to improve upper extremity motor function in stroke patients. The retrieval time was from the establishment of all databases to May 2023. According to the Cochrane system evaluation manual, the quality of the included studies was evaluated, and the data were extracted. Statistical analysis was carried out by using RevMan 5.3, R 4.3.0, and Stata 17.0 software. Finally, 94 RCTs were included, with a total of 5546 patients. Meta-analysis showed that NIBS improved the Fugl-Meyer assessment (FMA) score (mean difference (MD) = 6.51, 95% CI 6.20 ~ 6.82, P < 0.05), MBI score (MD = 7.69, 95% CI 6.57 ~ 8.81, P < 0.05), ARAT score (MD = 5.06, 95% CI 3.85 ~ 6.27, P < 0.05), and motor evoked potential (MEP) amplitude. The modified Ashworth scale score (MD =  − 0.37, 95% CI − 0.60 to − 0.14, P < 0.05), National Institutes of Health Stroke Scale score (MD =  − 2.17, 95% CI − 3.32 to − 1.11, P < 0.05), incubation period of MEP (MD =  − 0.72, 95% CI − 1.06 to − 0.38, P < 0.05), and central motor conduction time (MD =  − 0.90, 95% CI − 1.29 to − 0.50, P < 0.05) were decreased in stroke patients. Network meta-analysis showed that the order of interventions in improving FMA scores from high to low was anodal-transcranial direct current stimulation (tDCS) (surface under the cumulative ranking curve (SUCRA) = 83.7%) > cathodal-tDCS (SUCRA = 80.2%) > high-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (SUCRA = 68.5%) > low-frequency (LF)-rTMS (SUCRA = 66.5%) > continuous theta burst stimulation (cTBS) (SUCRA = 54.2%) > bilateral-tDCS (SUCRA = 45.2%) > intermittent theta burst stimulation (iTBS) (SUCRA = 34.1%) > sham-NIBS (SUCRA = 16.0%) > CR (SUCRA = 1.6%). In terms of improving MBI scores, the order from high to low was anodal-tDCS (SUCRA = 88.7%) > cathodal-tDCS (SUCRA = 85.4%) > HF-rTMS (SUCRA = 63.4%) > bilateral-tDCS (SUCRA = 56.0%) > LF-rTMS (SUCRA = 54.2%) > iTBS (SUCRA = 32.4%) > sham-NIBS (SUCRA = 13.8%) > CR (SUCRA = 6.1%). NIBS can effectively improve upper extremity motor function and activities of daily living after stroke. Among the various NIBS protocols, anodal-tDCS demonstrated the most significant intervention effect, followed by cathodal-tDCS and HF-rTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author.

References

  1. Campbell BCV, Khatri P (2020) Stroke. Lancet 396(10244):129–142

    Article  PubMed  Google Scholar 

  2. Anwer S, Waris A, Gilani SO, Iqbal J, Shaikh N, Pujari AN et al (2022) Rehabilitation of upper limb motor impairment in stroke: a narrative review on the prevalence, risk factors, and economic statistics of stroke and state of the art therapies. Healthcare 10(2):190

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia J (2022) Exploration on neurobiological mechanisms of the central-peripheral-central closed-loop rehabilitation. Front Cell Neurosci 16:982881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dan B (2019) Neuroscience underlying rehabilitation: what is neuroplasticity? Dev Med Child Neurol 61(11):1240

    Article  PubMed  Google Scholar 

  5. Motolese F, Capone F, Di Lazzaro V (2022) New tools for sha** plasticity to enhance recovery after stroke. Handb Clin Neurol 184:299–315

    Article  PubMed  Google Scholar 

  6. Cambiaghi M, Cordaro M, Dossena S, Cuzzocrea S, Buffelli M (2023) Editorial: Non-invasive brain stimulation techniques in neurological and neuropsychiatric disorders: physiological and molecular evidence. Front Syst Neurosci 17:1128205

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V et al (2020) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol 131(2):474–528

    Article  PubMed  Google Scholar 

  8. Fertonani A, Miniussi C (2017) Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 23(2):109–123

    Article  PubMed  Google Scholar 

  9. Lefaucheur JP (2019) Transcranial magnetic stimulation. Handb Clin Neurol 160:559–580

    Article  PubMed  Google Scholar 

  10. Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V et al (2016) Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul 9(3):323–335

    Article  CAS  PubMed  Google Scholar 

  11. Fisicaro F, Lanza G, Grasso AA, Pennisi G, Bella R, Paulus W et al (2019) Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord 12:1756286419878317

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vabalaite B, Petruseviciene L, Savickas R, Kubilius R, Ignatavicius P, Lendraitiene E (2021) Effects of high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) on upper extremity motor function in stroke patients: a systematic review. Medicina 57(11):1215

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tedesco Triccas L, Burridge JH, Hughes AM, Pickering RM, Desikan M, Rothwell JC et al (2016) Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. Clin Neurophysiol 127(1):946–955

    Article  CAS  PubMed  Google Scholar 

  14. Narayan SK, Jayan J, Arumugam M (2022) Short-term effect of noninvasive brain stimulation techniques on motor impairment in chronic ischemic stroke: a systematic review with meta-analysis. Neurol India 70(1):37–49

    Article  PubMed  Google Scholar 

  15. Ahmed I, Mustafaoglu R, Rossi S, Cavdar FA, Agyenkwa SK, Pang MYC et al (2023) Non-invasive brain stimulation techniques for the improvement of upper limb motor function and performance in activities of daily living after stroke: a systematic review and network meta-analysis. Arch Phys Med Rehabil 104(10):1683–1697

    Article  PubMed  Google Scholar 

  16. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 350:g7647

    Article  PubMed  Google Scholar 

  18. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

    Article  PubMed  Google Scholar 

  19. Li L, Huang H, Yu Y, Jia Y, Liu Z, Shi X et al (2021) Non-invasive brain stimulation for neuropathic pain after spinal cord injury: a systematic review and network meta-Analysis. Front Neurosci 15:800560

    Article  PubMed  Google Scholar 

  20. Shih MC, Tu YK (2021) An evidence-splitting approach to evaluation of direct-indirect evidence inconsistency in network meta-analysis. Res Synth Methods 12(2):226–238

    Article  PubMed  Google Scholar 

  21. Mbuagbaw L, Rochwerg B, Jaeschke R, Heels-Andsell D, Alhazzani W, Thabane L et al (2017) Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev 6(1):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hosomi K, Morris S, Sakamoto T, Taguchi J, Maruo T, Kageyama Y et al (2016) Daily repetitive transcranial magnetic stimulation for poststroke upper limb paresis in the subacute period. J Stroke Cerebrovasc Dis 25(7):1655–1664

    Article  PubMed  Google Scholar 

  23. Li J, Meng XM, Li RY, Zhang R, Zhang Z, Du YF (2016) Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction. Neural Regen Res 11(10):1584–1590

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meng XM, Zhao YY, Yang CM, Chen X, Li J (2016) Effects of repetitive transcranial magnetic stimulation on motor function of upper limbs in patients after cerebral infarction. Chin J Rehabil Med 31(06):664–669

    Google Scholar 

  25. Guan YZ, Li J, Zhang XW, Wu S, Du H, Cui LY et al (2017) Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: a one-year longitudinal randomized trial. CNS Neurosci Ther 23(12):940–946

    Article  PubMed  PubMed Central  Google Scholar 

  26. You GQ, Liang HY, You GJ, Huang Z (2017) Randomized controll study of repetitive transcranial magnetic stimulation in improvement of upper limb motor function of subacute ischemic stroke patients. China Med Pharm 7(07):187–189

    Google Scholar 

  27. Liang QT, Zhong YT, Shi XG, Wei YX, Luo XN, Zhao CW (2018) Effect of high-frequency repetitive transcranial magnetic stimulation onmotor and sensory function of upper limbs in ischemic stroke patient. Chin J Geriatr Heart Brain Vess Dis 20(11):1187–1190

    Google Scholar 

  28. Wei Y, Ba YL, Ma J, **e R (2018) The effects of dyskinesia of upper limb and electrophysiologic data of patients with cerebral infarction after transcranial magnetic stimulation at different frequenciess. J Brain Nerv Dis 26(03):133–137

    Google Scholar 

  29. Du J, Yang F, Hu J, Hu J, Xu Q, Cong N et al (2019) Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. Neuroimage Clin 21:101620

    Article  PubMed  Google Scholar 

  30. Kim JS, Kim DH, Kim HJ, Jung KJ, Hong J, Kim DY (2020) Effect of repetitive transcranial magnetic stimulation in post-stroke patients with severe upper-limb motor impairment. Brain Neurorehabil 13(1):e3

    Article  PubMed  Google Scholar 

  31. Liu CM, Meng Y, Li HH, Zhang GQ (2019) Effects of repetitive transcranial magnetic stimulation on motor function and serum levels of MMP-9/hs-CRP of ischemic stroke patients. Tian** Med J 47(02):184–188

    CAS  Google Scholar 

  32. **ao CL, Pan CH, Chen Y, Hu N, Huangn SK, Li Q et al (2019) Effects of high-frequency repetitive transcranial magnetic stimulation in different frequencies on upper limb function after ischemic stroke. Chin J Rehabil Theory Pract 25(05):557–563

    Google Scholar 

  33. Gao TH, Jiang CY, Sun LM, Bai YL (2020) Effect of different frequency of rTMS on the recovery of upper limb motor function in stroke patients. Shanghai Med Pharm J 41(01):15–18

    Google Scholar 

  34. Liu JF, Wang H, Xu HY, Zhang MY (2020) Effects of transcranial magnetic stimulation combined with functional training on neurological function and limb function in patients with stroke. Hainan Med J 31(15):1926–1929

    Google Scholar 

  35. Wang Q, Zhang D, Zhao YY, Hai H, Ma YW (2020) Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: a randomized clinical trial. Brain Stimul 13(4):979–986

    Article  PubMed  Google Scholar 

  36. Yang Y, Jia XT, Wang DY (2020) Effects of repeated transcranial magnetic stimulation combined with occupational therapy on cognitive and motor functions in patients with hemiplegia caused by ischemic stroke. Clin Res Pract 5(10):25–26

    Google Scholar 

  37. Zhou Z, Shen XF, **ong L, Zhang W, Huang HY, Zhang P et al (2020) Effects of high-frequency repetitive transcranial magnetic stimulation to premotor areas on upper limb motor dysfunction after stroke. Chin J Rehabil Theory Pract 26(06):697–702

    Google Scholar 

  38. Su XX, Yang XY, Huang TH, Yang XH, Wang CS (2021) The effect of constraint-induced movement therapy assisted rTMS on the recovery of upper limb motor function in patients with hemiplegia after stroke. Shenzhen J Integr Trad Chin West Med 31(11):48–49

    Google Scholar 

  39. Tang NZ (2021) Effect of high-frequency repetitive transcranial magnetic stimulation on the functional recovery of upper limbs in stroke patients. Chin Fore Med Res 19(23):158–160

    Google Scholar 

  40. Ni J, Jiang W, Gong X, Fan Y, Qiu H, Dou J et al (2022) Effect of rTMS intervention on upper limb motor function after stroke: a study based on fNIRS. Front Aging Neurosci 14:1077218

    Article  PubMed  Google Scholar 

  41. Wu X, Wang R, Wu Q, Liao C, Zhang J, Jiao H et al (2023) The effects of combined high-frequency repetitive transcranial magnetic stimulation and cervical nerve root magnetic stimulation on upper extremity motor recovery following stroke. Front Neurosci 17:1100464

    Article  PubMed  PubMed Central  Google Scholar 

  42. Seniów J, Bilik M, Leśniak M, Waldowski K, Iwański S, Członkowska A (2012) Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabil Neural Repair 26(9):1072–1079

    Article  PubMed  Google Scholar 

  43. Barros Galvão SC, Costa B, dos Santos R, Borba dos Santos P, Cabral ME, Monte-Silva K (2014) Efficacy of coupling repetitive transcranial magnetic stimulation and physical therapy to reduce upper-limb spasticity in patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil 95(2):222–229

    Article  PubMed  Google Scholar 

  44. Li BJ, Li F, Zhang T (2016) Effects of various intensity of repetitive transcranial magnetic stimulation on upper limbs motor function after stroke. Chin J Rehabil Theory Pract 22(09):1004–1007

    Google Scholar 

  45. Aşkın A, Tosun A, Demirdal ÜS (2017) Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: a randomized controlled trial. Somatosens Mot Res 34(2):102–107

    Article  PubMed  Google Scholar 

  46. Liu Y, Wang XY, Zhang CL, Huang DE, Guo XP, **ao H et al (2018) Effects of low-frequency repetitive transcranial magnetic stimulation on upper limb spasticity after stroke: a task-state functional magnetic resonance study. Chin J Rehabil Theory Pract 24(07):828–833

    Google Scholar 

  47. Long H, Wang H, Zhao C, Duan Q, Feng F, Hui N (2018) Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restor Neurol Neurosci 36(1):21–30

    PubMed  Google Scholar 

  48. Meng Y, Zhang D, Hai H, Zhao YY, Ma YW (2020) Efficacy of coupling intermittent theta-burst stimulation and 1 Hz repetitive transcranial magnetic stimulation to enhance upper limb motor recovery in subacute stroke patients: a randomized controlled trial. Restor Neurol Neurosci 38(1):109–118

    PubMed  Google Scholar 

  49. Wang YQ, Lv MX, Liu SJ, Liang JJ, Li TT (2020) Effect of low-frequency healthy side rTMS with high dose on upper limb motor function in cerebral infarction patients. Chin J Biomed Engineer 39(04):508–512

    Google Scholar 

  50. Gottlieb A, Boltzmann M, Schmidt SB, Gutenbrunner C, Krauss JK, Stangel M et al (2021) Treatment of upper limb spasticity with inhibitory repetitive transcranial magnetic stimulation: a randomized placebo-controlled trial. NeuroRehabilitation 49(3):425–434

    Article  PubMed  Google Scholar 

  51. Qin Y, Liu X, Zhang Y, Wu J, Wang X (2023) Effects of transcranial combined with peripheral repetitive magnetic stimulation on limb spasticity and resting-state brain activity in stroke patients. Front Hum Neurosci 17:992424

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sung WH, Wang CP, Chou CL, Chen YC, Chang YC, Tsai PY (2013) Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. Stroke 44(5):1375–1382

    Article  PubMed  Google Scholar 

  53. Watanabe K, Kudo Y, Sugawara E, Nakamizo T, Amari K, Takahashi K et al (2018) Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction. J Neurol Sci 384:10–14

    Article  PubMed  Google Scholar 

  54. Jiang C (2018) Research on effect of intermittent theta burst stimulation and 1 Hz repetitive transcranial magnetic stimulation on recovering upper limb function of stroke patient. Anhui Med Univ

  55. Tang XW, Hu RP, Zhu YL, Fan SJ, Wu JF, Yu KW et al (2018) The effect of intermittent theta burst stimulation on motor dysfunction after stroke. Chin J Rehabil Med 33(12):1410–1415

    Google Scholar 

  56. Chen YJ, Huang YZ, Chen CY, Chen CL, Chen HC, Wu CY et al (2019) Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: a pilot randomized controlled trial. BMC Neurol 19(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  57. Miao YJ, Gan Z, Shen XS, Kan XL, Mao J, Lu Q et al (2020) The effect of intermittent θ burst stimulation on sEMG and function of biceps brachii and triceps in patients with cerebral infarction. Chin J Rehabil Med 35(04):440–446

    Google Scholar 

  58. Zhou J, Liu YL (2022) Effects of theta burst stimulation combined with mirror therapy on motor recovery of upper limbs of patients in stroke recovery period. Neural Injury Funct Reconstr 17(12):701–704

    Google Scholar 

  59. Di Lazzaro V, Capone F, Di Pino G, Pellegrino G, Florio L, Zollo L et al (2016) Combining robotic training and non-invasive brain stimulation in severe upper limb-impaired chronic stroke patients. Front Neurosci 10:88

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nicolo P, Magnin C, Pedrazzini E, Plomp G, Mottaz A, Schnider A et al (2018) Comparison of neuroplastic responses to cathodal transcranial direct current stimulation and continuous theta burst stimulation in subacute stroke. Arch Phys Med Rehabil 99(5):862–872

    Article  PubMed  Google Scholar 

  61. Kuzu Ö, Adiguzel E, Kesikburun S, Yaşar E, Yılmaz B (2021) The effect of sham controlled continuous theta burst stimulation and low frequency repetitive transcranial magnetic stimulation on upper extremity spasticity and functional recovery in chronic ischemic stroke patients. J Stroke Cerebrovasc Dis 30(7):105795

    Article  PubMed  Google Scholar 

  62. Hesse S, Waldner A, Mehrholz J, Tomelleri C, Pohl M, Werner C (2011) Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabil Neural Repair 25(9):838–846

    Article  PubMed  Google Scholar 

  63. Wu D, Qian L, Zorowitz RD, Zhang L, Qu Y, Yuan Y (2013) Effects on decreasing upper-limb poststroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study. Arch Phys Med Rehabil 94(1):1–8

    Article  PubMed  Google Scholar 

  64. Lee SJ, Chun MH (2014) Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch Phys Med Rehabil 95(3):431–438

    Article  PubMed  Google Scholar 

  65. Rocha S, Silva E, Foerster Á, Wiesiolek C, Chagas AP, Machado G et al (2016) The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Disabil Rehabil 38(7):653–660

    Article  PubMed  Google Scholar 

  66. Qu SW, Song WQ (2017) Effect of cathodal transcranial direct current stimulation on upper limb motor function in patients with stroke. Chine J Cerebrov Dis 14(12):622–627

    Google Scholar 

  67. Yao X, Cui L, Wang J, Feng W, Bao Y, **e Q (2020) Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: a randomized controlled trial. J Neuroeng Rehabil 17(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zou F, Wang LQ, Liu B (2020) Effect of transcranial direct current stimulation on the rehabilitation of upper limb function in stroke patients with hemiplegia. Chin J Rehabil Med 35(06):732–734

    Google Scholar 

  69. Boasquevisque DS, Servinsckins L, de Paiva JPQ, Dos Santos DG, Soares P, Pires DS et al (2021) Contralesional cathodal transcranial direct current stimulation does not enhance upper limb function in subacute stroke: a pilot randomized clinical trial. Neural Plast 2021:8858394

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang J, Wang CF, Yang F, Yu HL, Sun CC, Zhang Y et al (2021) Effect of cathodic transcranial direct current stimulation combined with robot therapy on upper limb dysfunction after stroke. Chin J Phys Med Rehabil 43(3):235–238

    Google Scholar 

  71. Liu JM, Huang FB, Liu JY, Yang X (2023) Effects of cathodic transcranial direct current stimulation on motor function of upper limbs and fingers in patients with right brain injury. Chin J Rehabil Theory Pract 29(1):82–87

    Google Scholar 

  72. Pires R, Baltar A, Sanchez MP, Antonino GB, Brito R, Berenguer-Rocha M et al (2023) Do higher transcranial direct current stimulation doses lead to greater gains in upper limb motor function in post-stroke patients? Int J Environ Res Public Health 20(2):1279

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rossi C, Sallustio F, Di Legge S, Stanzione P, Koch G (2013) Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur J Neurol 20(1):202–204

    Article  CAS  PubMed  Google Scholar 

  74. Cha HK, Ji SG, Kim MK, Chang JS (2014) Effect of transcranial direct current stimulation of function in patients with stroke. J Phys Ther Sci 26(3):363–365

    Article  PubMed  PubMed Central  Google Scholar 

  75. Viana RT, Laurentino GE, Souza RJ, Fonseca JB, Silva Filho EM, Dias SN et al (2014) Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation 34(3):437–446

    Article  CAS  PubMed  Google Scholar 

  76. Yin Y, Zuo XQ, Lv YL, Jia ZS, Zhao ZB, Huai YP et al (2015) Effects of transcranial direct current stimulation on motor function of upper limbs in stroke patients. Chin J Rehabil Theory Pract 7:830–833

    Google Scholar 

  77. Zhou YP, Zhang YZ, Wang G, Liu YB, Hu SS (2018) Effects of transcranial direct current stimulation combined with motor imagery therapy on upper limbs. Chin J Phys Med Rehabil 40(9):657–661

    CAS  Google Scholar 

  78. ** J, Jiang S, Pan XL, Wang XX, Shi JH (2019) Effects of transcranial direct current stimulation combined with rehabilitation training on cognitive function and limb motor function in stroke patients with hemiplegia. Chin J Phys Med Rehabil 41(6):415–417

    Google Scholar 

  79. Li YB, Feng HX, Wang HX, Li J, Chen N, Yang JL et al (2019) Effect of transcranial direct current stimulation combined with mirror neurons rehabilitation training system on upper extremity motor function and somatosensory evoked potentials after stroke. Chin J Rehabil 34(4):187–190

    Google Scholar 

  80. Mazzoleni S, Tran VD, Dario P, Posteraro F (2019) Effects of transcranial direct current stimulation (tDCS) combined with wrist robot-assisted rehabilitation on motor recovery in subacute stroke patients: a randomized controlled trial. IEEE Trans Neural Syst Rehabil Eng 27(7):1458–1466

    Article  PubMed  Google Scholar 

  81. Tang CZ, Cai Q, Yang X, Xu L, Ma M, Sun WD et al (2019) Transcranial direct current stimulation enhances the effect of task-oriented training in the rehabilitation of upper limb dysfunction after stroke. Chin J Phys Med Rehabil 41(8):570–574

    Google Scholar 

  82. Zhang SL (2019) Effect of resistance exercise combined with transcranial direct current stimulation on limb function in patients with hemiplegia after stroke. J Qiqihar Med Univ 40(12):1499–1500

    Google Scholar 

  83. Zheng CJ, **a WG, Duan C, Li ZL, Zhang X, Wang J et al (2019) Effect of transcranial direct current stimulation on upper limb and hand function in stroke: a double-blind randomizecontrolled trial. Chin J Rehabil 34(12):623–626

    Google Scholar 

  84. Chen H, Cai Q, Xu L, Yang X, Song PF, Liu J et al (2020) Effects of transcranial direct current stimulation and mirror therapy on upper limb motor function for patients after stroke. Chin J Rehabil Theory Pract 26(3):301–305

    Google Scholar 

  85. Duan QX (2020) Effect of transcranial direct current stimulation combined with task-oriented training on limb function and NIHSS score in stroke patients with hemiplegia. J Hubei Univ Scien Technol 34(4):329–331

    Google Scholar 

  86. Jiang Y (2020) Therapeutic effect of transcranial direct current stimulation on hand dysfunction after stroke. Inner Mongolia Med Univ

  87. Liao WW, Chiang WC, Lin KC, Wu CY, Liu CT, Hsieh YW et al (2020) Timing-dependent effects of transcranial direct current stimulation with mirror therapy on daily function and motor control in chronic stroke: a randomized controlled pilot study. J Neuroeng Rehabil 17(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu YW, Huang L, Zhang SX, Ai YN, Li LL, Hu XQ (2020) Effects of transcranial direct current stimulation combined with virtual reality training on upper limb function of stroke patient: a pilot randomized controlled single-blind trial. West China Med J 35(5):544–549

    CAS  Google Scholar 

  89. Wa Q (2020) Effect of mirror image therapy combined with transcranial directcurrent stimulation on upper limb motor dysfunction in patients with stroke. **’an Physi Edu Univ

  90. Zheng S, Peng L, Mu JP (2020) Effect of transcranial direct current stimulation combined with staging acupuncture on upper limb motor function in stroke patients with hemiplegia. China Med Herald 17(10):86–89

    Google Scholar 

  91. Zhou JS, Lv X, Zhang LL, Zhang WH, Dong L, Chai LJ et al (2020) Application of transcranial direct current stimulation combined with conventional adjuvant therapy in upper limb function rehabilitation of stroke patients with hemiplegia. Modern Pract Med 32(5):579–580

    Google Scholar 

  92. Li XL (2021) Effects of mirror neuron motor imitation training combined with transcranial direct current stimulation on upper limb function and activities of daily living in hemiplegic patients after stroke. J **njiang Med Univ 44(6):713–717

    Google Scholar 

  93. Ren SS, Wang XJ, Chen AL, Yang T, Gao MX (2021) Effect of transcranial direct current stimulation combined with music mirror therapy on negative emotion and upper limb motor function in stroke patients with hemiplegia. Chin J Phys Med Rehabil 43(11):1003–1006

    Google Scholar 

  94. Wang W, Song WQ, Zhang YM, Hu J, Yan L, Zhang DH (2021) Effect of transcranial direct current stimulation on upper limb motor function for patients with stroke. Chin J Rehabil Theory Pract 27(9):1082–1086

    Google Scholar 

  95. Wang X, Zhang Y, Wang CF, Sun CC, Ma LF, Xue X et al (2021) Clinical effect of transcranial direct current stimulation combined with acupuncture for upper limb dysfunction after stroke. Chin J Rehabil 36(3):131–134

    Google Scholar 

  96. Yi Y, Zou YB (2021) Therapeutic effect of transcranial direct current stimulation combined with muscle energy technology on upper limb spasm after stroke. Chin J Phys Med Rehabil 43(11):1007–1009

    Google Scholar 

  97. Yu H, Chen ZJ (2021) Effect of mirror therapy combined with transcranial direct current stimulation on motor function of upper limbs in patients with hemiplegia after stroke. Chin J Phys Med Rehabil 43(9):801–803

    Google Scholar 

  98. Wang C, Niu DW, Wu WB (2021) The effect of tDCS therapy on patients with hemiplegia after stroke and its effect on sensory function were analyzed. J Med Theory Pract 34(14):2533–2534

    Google Scholar 

  99. Chen Y, Sun YY, Zhang QY (2022) Therapeutic effect of transcranial direct current stimulation combined with mirror neuron rehabilitation training on stroke patients with hemiplegia. Modern Med Health Res 6(5):80–83

    Google Scholar 

  100. Kashoo FZ, Al-Baradie RS, Alzahrani M, Alanazi A, Manzar MD, Gugnani A et al (2022) Effect of transcranial direct current stimulation augmented with motor imagery and upper-limb functional training for upper-limb stroke rehabilitation: a prospective randomized controlled trial. Int J Environ Res Public Health 19(22):15199

    Article  PubMed  PubMed Central  Google Scholar 

  101. Han X, Li X, Song GQ (2023) Effects of transcranial direct current stimulation on upper limb motor function and somatosensory evoked potential in stroke patients. Chin J Rehabil 38(5):272–276

    Google Scholar 

  102. Pang ZZ, Lv YX, Gao CH, Yu LG, Zhang H (2023) Effect of transcranial direct current stimulation on upper limb motor function of patients with stroke. Chin J Rehabil Theory Pract 29(3):275–279

    Google Scholar 

  103. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G (2010) Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75(24):2176–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Straudi S, Fregni F, Martinuzzi C, Pavarelli C, Salvioli S, Basaglia N (2016) tDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of Sstroke. Biomed Res Int 2016:5068127

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beaulieu LD, Blanchette AK, Mercier C, Bernard-Larocque V, Milot MH (2019) Efficacy, safety, and tolerability of bilateral transcranial direct current stimulation combined to a resistance training program in chronic stroke survivors: a double-blind, randomized, placebo-controlled pilot study. Restor Neurol Neurosci 37(4):333–346

    PubMed  Google Scholar 

  106. ** M, Zhang Z, Bai Z, Fong KNK (2019) Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: a randomized controlled pilot study. J Neurol Sci 405:116436

    Article  PubMed  Google Scholar 

  107. Alisar DC, Ozen S, Sozay S (2020) Effects of bihemispheric transcranial direct current stimulation on upper extremity function in stroke patients: a randomized double-blind sham-controlled study. J Stroke Cerebrovasc Dis 29(1):104454

    Article  PubMed  Google Scholar 

  108. Hua Q, **a WG, Li BB, Liu FX, Cui XY (2020) Effects of tDCS combined with virtual scene interactive training on upper limh function and ADL in hemiplegic patientswith cerebral infarction. Chin J Rehabil 35(1):15–18

    Google Scholar 

  109. Sun WD, Cai Q, Xu L, Yang X, Luo L, Ma M (2020) Transcranial direct current stimulation combined with bilateral training can mprove upper limb motor function after a stroke. Chin J Phys Med Rehabil 42(03):205–208

    Google Scholar 

  110. Wei Y, **a J, Shu Y, Tang YH, Mu XM (2020) Effects of transcranial direct current stimulation on upper limb function and serum levels of BDNF, NGF and NT-3 in patients with hemiplegia after cerebral infarction. Modern Med Health Res 4(17):1–3

    Google Scholar 

  111. Kim SH (2021) Effects of dual transcranial direct current stimulation and modified constraint-induced movement therapy to improve upper-limb function after stroke: a double-blinded, pilot randomized controlled trial. J Stroke Cerebrovasc Dis 30(9):105928

    Article  PubMed  Google Scholar 

  112. Pinto EF, Gupta A, Kulkarni GB, Andrade C (2021) A randomized, double-blind, sham-controlled study of transcranial direct current stimulation as an augmentation intervention for the attenuation of motor deficits in patients with stroke. J ECT 37(4):281–290

    Article  PubMed  Google Scholar 

  113. Yang T, Chen HY, Gao Z, Xu L, Fan JF, Xu CX et al (2021) Transcranial direct current stimulation can improve the effectiveness of robot-assisted rehabilitation of a hemiplegic upper limb. Chin J Phys Med Rehabil 43(9):781–786

    Google Scholar 

  114. Prathum T, Piriyaprasarth P, Aneksan B, Hiengkaew V, Pankhaew T, Vachalathiti R et al (2022) Effects of home-based dual-hemispheric transcranial direct current stimulation combined with exercise on upper and lower limb motor performance in patients with chronic stroke. Disabil Rehabil 44(15):3868–3879

    Article  PubMed  Google Scholar 

  115. Hsu SP, Lu CF, Lin BF, Tang CW, Kuo IJ, Tsai YA et al (2023) Effects of bihemispheric transcranial direct current stimulation on motor recovery in subacute stroke patients: a double-blind, randomized sham-controlled trial. J Neuroeng Rehabil 20(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  116. Brainin M, Feigin VL, Norrving B, Martins SCO, Hankey GJ, Hachinski V (2020) Global prevention of stroke and dementia: the WSO Declaration. Lancet Neurol 19(6):487–488

    Article  PubMed  Google Scholar 

  117. Feigin VL, Krishnamurthi R, Merkin A, Nair B, Kravchenko M, Jalili-Moghaddam S (2022) Digital solutions for primary stroke and cardiovascular disease prevention: a mass individual and public health approach. Lancet Reg Health West Pac 29:100511

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jiang B (2021) Analysis of the epidemiological characteristics of post-stroke complications and suggestions for the optimization of grass-roots management in grass-roots management system. Chine Gener Practice 24(12):1445–1453

    Google Scholar 

  119. Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY et al (2023) Noninvasive brain stimulation for neurorehabilitation in post-stroke patients. Brain Sci 13(3):451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shen QR, Hu MT, Feng W, Li KP, Wang W (2022) Narrative review of noninvasive brain stimulation in stroke rehabilitation. Med Sci Monit 28:e938298

    Article  PubMed  PubMed Central  Google Scholar 

  121. Grefkes C, Ward NS (2014) Cortical reorganization after stroke: how much and how functional? Neuroscientist 20(1):56–70

    Article  PubMed  Google Scholar 

  122. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D et al (2014) Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol 10(10):597–608

    Article  PubMed  Google Scholar 

  123. Terranova C, Rizzo V, Cacciola A, Chillemi G, Calamuneri A, Milardi D et al (2019) Is there a future for non-invasive brain stimulation as a therapeutic tool? Front Neurol 9:1146

    Article  PubMed  PubMed Central  Google Scholar 

  124. Beaulieu LD, Milot MH (2018) Changes in transcranial magnetic stimulation outcome measures in response to upper-limb physical training in stroke: a systematic review of randomized controlled trials. Ann Phys Rehabil Med 61(4):224–234

    Article  PubMed  Google Scholar 

  125. Bradnam LV, Stinear CM, Barber PA, Byblow WD (2012) Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex 22(11):2662–2671

    Article  PubMed  Google Scholar 

  126. Mars RB, Grol MJ (2007) Dorsolateral prefrontal cortex, working memory, and prospective coding for action. J Neurosci 27(8):1801–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang Y, Zhang B, Cao J, Yu S, Wilson G, Park J et al (2020) Potential locations for noninvasive brain stimulation in treating autism spectrum disorders-a functional connectivity study. Front Psychiatry 11:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F et al (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128(1):56–92

    Article  PubMed  Google Scholar 

  129. Priori A, Hallett M, Rothwell JC (2009) Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul 2(4):241–245

    Article  PubMed  Google Scholar 

  130. Buchanan DM, Bogdanowicz T, Khanna N, Lockman-Dufour G, Robaey P, D’Angiulli A et al (2021) Systematic review on the safety and tolerability of transcranial direct current stimulation in children and adolescents. Brain Sci 11(2):212

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant Nos.: 2018YFC2001600 and 2018YFC2001604); National Natural Science Foundation of China (Grant Nos.: 82272583, 82172554, 82272589, 81871836); Shanghai Health Care Commission (Grant No.: 2022JC026); Shanghai Science and Technology Committee (Grant No.: 22010504200); Shanghai Rising-Star Program (Grant No.: 23QA1409200); Shanghai Youth Top Talent Development Plan; Shanghai “Rising Stars of Medical Talent” — Distinguished Young Medical Talent Program; and Shanghai Talent Development Fund (2021074).

Author information

Authors and Affiliations

Authors

Contributions

Ling-Ling Li: writing—original draft, methodology; Jia-Jia Wu: methodology, project administration, writing—review and editing; Kun-Peng Li: formal analysis, methodology, writing—review and editing; **g **: formal analysis, methodology, writing—review and editing; Yun-Ting **ang: investigation, methodology, writing—review and editing; Xu-Yun Hua: conceptualization, funding acquisition, project administration, supervision; Mou-**ong Zheng: conceptualization, funding acquisition, project administration, supervision; Jian-Guang Xu: conceptualization, funding acquisition, project administration, supervision. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Xu-Yun Hua, Mou-**ong Zheng or Jian-Guang Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.71 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LL., Wu, JJ., Li, KP. et al. Comparative efficacy of different noninvasive brain stimulation protocols on upper-extremity motor function and activities of daily living after stroke: a systematic review and network meta-analysis. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07437-4

Keywords

Navigation