Log in

Altered brain function and structure pre- and post- COVID-19 infection: a longitudinal study

  • COVID-19
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Evidence indicates that the SARS-CoV-2 virus can infect the brain, resulting in central nervous system symptoms. However, there is a lack of a longitudinal imaging study investigating the impact of Coronavirus disease 2019 (COVID-19) infection on brain function. Consequently, this study aimed to fill this knowledge gap using functional magnetic resonance imaging (fMRI).

Methods

Twenty-one participants underwent two resting-state fMRI scans before and after infection. The amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were assessed to identify the brain function changes. Additionally, voxel-based morphometry (VBM) was utilized to assess changes in brain structure. Subsequently, brain regions that showed significant differences were identified as regions of interest (ROI) in functional connectivity analysis (FC).

Results

After infection, ALFF was increased in the bilateral paracentral lobe and postcentral gyrus while decreased in the bilateral precuneus. Moreover, ReHo was decreased in the cerebellar vermis, accompanied by a decrease in FC with the bilateral postcentral gyrus. Furthermore, gray matter volume (GMV) reduction was observed in the left thalamus. The results of the correlation analysis revealed a negative correlation between ALFF values in the bilateral precuneus and scores on the self-rating anxiety scale (SAS) in pre- and post-infection datasets.

Conclusion

Neuroimaging alterations may occur before the manifestation of clinical symptoms, indicating that the functioning of the motor and sensory systems, as well as their connection, might be affected following infection. This alteration can potentially increase the potential of maladaptive responses to environmental stimuli. Furthermore, patients may be susceptible to future emotional disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

COVID-19:

Coronavirus disease 2019

fMRI:

Functional magnetic resonance imaging

ALFF:

Amplitude of low-frequency fluctuation

ReHo:

Regional homogeneity

FC:

Functional connectivity

VBM:

Voxel-based morphometry

GMV:

Gray matter volume

ROI:

Regions of interest

SAS:

Self-anxiety scale

SDS:

Self-depression scale

BMI:

Body mass index

References

  1. Pezzini A, Padovani A (2020) Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol 16(11):636–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koralnik IJ, Tyler KL (2020) COVID-19: A Global Threat to the Nervous System. Ann Neurol 88(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh S et al (2023) Neurological infection and complications of SARS-CoV-2: A review. Medicine (Baltimore) 102(5):e30284

    Article  CAS  PubMed  Google Scholar 

  4. Yang AC et al (2021) Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595(7868):565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stein SR et al (2022) SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612(7941):758–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crunfli F et al (2022) Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A 119(35):e2200960119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zang YF et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91

    Article  PubMed  Google Scholar 

  8. Lv H et al (2018) Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. AJNR Am J Neuroradiol 39(8):1390–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zang Y et al (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400

    Article  PubMed  Google Scholar 

  10. Buchel C, Friston K (2000) Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13(8–9):871–882

    Article  CAS  PubMed  Google Scholar 

  11. Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. Neuroimage 11(6 Pt 1):805–821

    Article  CAS  PubMed  Google Scholar 

  12. Cattarinussi G et al (2022) Altered brain regional homogeneity is associated with depressive symptoms in COVID-19. J Affect Disord 313:36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Du YY et al (2022) Survivors of COVID-19 exhibit altered amplitudes of low frequency fluctuation in the brain: a resting-state functional magnetic resonance imaging study at 1-year follow-up. Neural Regen Res 17(7):1576–1581

    Article  PubMed  Google Scholar 

  14. Fischer D et al (2022) Disorders of Consciousness Associated With COVID-19: A Prospective Multimodal Study of Recovery and Brain Connectivity. Neurology 98(3):e315–e325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu Y et al (2020) Cerebral Micro-Structural Changes in COVID-19 Patients - An MRI-based 3-month Follow-up Study. EClinicalMedicine 25:100484

    Article  PubMed  PubMed Central  Google Scholar 

  16. Besteher B et al (2022) Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res 317:114836

    Article  PubMed  PubMed Central  Google Scholar 

  17. Douaud G et al (2022) SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604(7907):697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bechmann N et al (2022) Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes Endocrinol 10(3):221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mukherjee S, Pahan K (2021) Is COVID-19 Gender-sensitive? J Neuroimmune Pharmacol 16(1):38–47

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vasilevskaya A et al (2023) Sex and age affect acute and persisting COVID-19 illness. Sci Rep 13(1):6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang L et al (2023) Altered brain activity and functional connectivity in migraine without aura during and outside attack. Neurol Res 45(7):603–609

    Article  PubMed  Google Scholar 

  22. Yan CG et al (2016) DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14(3):339–351

    Article  PubMed  Google Scholar 

  23. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583

    Article  PubMed  Google Scholar 

  24. Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage 42(3):1178–1184

    Article  PubMed  Google Scholar 

  25. Nakao T et al (2011) fMRI of patients with social anxiety disorder during a social situation task. Neurosci Res 69(1):67–72

    Article  PubMed  Google Scholar 

  26. Yuan C et al (2018) Precuneus-related regional and network functional deficits in social anxiety disorder: A resting-state functional MRI study. Compr Psychiatry 82:22–29

    Article  PubMed  Google Scholar 

  27. Bashford-Largo J et al (2021) Reduced top-down attentional control in adolescents with generalized anxiety disorder. Brain Behav 11(2):e01994

    Article  PubMed  Google Scholar 

  28. Wu T et al (2021) Prevalence of mental health problems during the COVID-19 pandemic: A systematic review and meta-analysis. J Affect Disord 281:91–98

    Article  CAS  PubMed  Google Scholar 

  29. Ausserhofer D et al (2023) Relationship between depression, anxiety, stress, and SARS-CoV-2 infection: a longitudinal study. Front Psychol 14:1116566

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lim SH et al (1994) Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr Clin Neurophysiol 91(3):179–193

    Article  CAS  PubMed  Google Scholar 

  31. Patra A et al (2021) Morphology and Morphometry of Human Paracentral Lobule: An Anatomical Study with its Application in Neurosurgery. Asian J Neurosurg 16(2):349–354

    Article  PubMed  PubMed Central  Google Scholar 

  32. Casamento-Moran A et al (2023) Cerebellar Excitability Regulates Physical Fatigue Perception. J Neurosci 43(17):3094–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pierce JE et al (2023) Explicit and implicit emotion processing in the cerebellum: a meta-analysis and systematic review. Cerebellum 22(5):852–864

  34. Baumann O et al (2015) Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14(2):197–220

    Article  PubMed  Google Scholar 

  35. Ruscheweyh R et al (2014) Altered experimental pain perception after cerebellar infarction. Pain 155(7):1303–1312

    Article  PubMed  Google Scholar 

  36. Hilber P (2022) The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. Cerebellum 21(5):791–800

    Article  PubMed  Google Scholar 

  37. Xu LY et al (2017) Relationship between cerebellar structure and emotional memory in depression. Brain Behav 7(7):e00738

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang X et al (2018) Alterations of the amplitude of low-frequency fluctuations in anxiety in Parkinson’s disease. Neurosci Lett 668:19–23

    Article  CAS  PubMed  Google Scholar 

  39. Dai P et al (2023) Altered effective connectivity among the cerebellum and cerebrum in patients with major depressive disorder using multisite resting-state fMRI. Cerebellum 22(5):781–789

  40. Duan K et al (2021) Alterations of frontal-temporal gray matter volume associate with clinical measures of older adults with COVID-19. Neurobiol Stress 14:100326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kamasak B et al (2023) Effects of COVID-19 on brain and cerebellum: a voxel based morphometrical analysis. Bratisl Lek Listy 124(6):442–448

    PubMed  Google Scholar 

  42. Qin Y et al (2021) Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest 131(8):e147329

  43. Charyasz E et al (2023) Functional map** of sensorimotor activation in the human thalamus at 9.4 Tesla. Front Neurosci 17:1116002

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wolff M et al (2021) A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 120:222–235

    Article  CAS  PubMed  Google Scholar 

  45. Saleki K et al (2020) The involvement of the central nervous system in patients with COVID-19. Rev Neurosci 31(4):453–456

    Article  CAS  PubMed  Google Scholar 

  46. Chen R et al (2020) The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol 11:573095

    Article  PubMed  Google Scholar 

  47. Soriano JB et al (2022) A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 22(4):e102–e107

    Article  CAS  PubMed  Google Scholar 

  48. Raveendran AV (2021) Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes Metab Syndr 15(1):145–146

    Article  CAS  PubMed  Google Scholar 

  49. Premraj L et al (2022) Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci 434:120162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koyama MS et al (2017) Differential contributions of the middle frontal gyrus functional connectivity to literacy and numeracy. Sci Rep 7(1):17548

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lu F, Yang W, Qiu J (2023) Neural bases of motivated forgetting of autobiographical memories. Cogn Neurosci 14(1):15–24

    Article  PubMed  Google Scholar 

  52. Wirebring LK et al (2022) An fMRI intervention study of creative mathematical reasoning: behavioral and brain effects across different levels of cognitive ability. Trends Neurosci Educ 29:100193

    Article  PubMed  Google Scholar 

  53. Asadi-Pooya AA et al (2022) Long COVID syndrome-associated brain fog. J Med Virol 94(3):979–984

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the volunteers for their involvement in the study.

Funding

This study was supported by Zhejiang Province Traditional Chinese Medicine Science and Technology Plan [grant number 2022ZA103].

Author information

Authors and Affiliations

Authors

Contributions

** **: Conceptualization, Methodology, Investigation, Data curation, Validation, Formal analysis, Writing—original draft, Visualization, Funding acquisition. Feng Cui: Software, Methodology, Data curation, Formal analysis. Min Xu: Investigation, Writing—review & editing. Yue Ren: Software, Methodology. Lu** Zhang: Conceptualization, Project administration, Writing—review & editing, Supervision, Resources.

Corresponding author

Correspondence to Lu** Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The study was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and was approved by the Ethics Committee of Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (2023KLL014). Informed consent all participants were informed about the experimental procedures and gave their informed written consent to participate in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 916 KB)

Supplementary file2 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, P., Cui, F., Xu, M. et al. Altered brain function and structure pre- and post- COVID-19 infection: a longitudinal study. Neurol Sci 45, 1–9 (2024). https://doi.org/10.1007/s10072-023-07236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-07236-3

Keywords

Navigation