Log in

The alterations of brain network degree centrality in patients with neovascular glaucoma: a resting-state fMRI study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Purpose

To explore the alterations of whole brain functional network using the degree centrality (DC) analysis in neovascular glaucoma (NVG) and the correlation between DC values and NVG clinical indices.

Materials and methods

Twenty NVG patients and twenty normal controls (NC), closely matched in age, sex, and education, were recruited for this study. All subjects underwent comprehensive ophthalmologic examinations and a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The differences in DC values of brain network between NVG and NC groups were analyzed, and correlation analysis was performed to explore the relationships between DC values and clinical ophthalmological indices in NVG group.

Results

Compared with NC group, significantly decreased DC values were found in the left superior occipital gyrus and left postcentral gyrus, while significantly increased DC values in the right anterior cingulate gyrus and left medial frontal gyrus in NVG group. (All P < 0.05, FDR corrected). In the NVG group, the DC value in left superior occipital gyrus showed significantly positive correlations with retinal nerve fiber layer (RNFL) thickness (R = 0.484, P = 0.031) and mean deviation of visual field (MDVF) (R = 0.678, P = 0.001). Meanwhile, the DC value in the left medial frontal gyrus demonstrated significantly negative correlations with RNFL (R = − 0.544, P = 0.013) and MDVF (R = − 0.481, P = 0.032).

Conclusions

NVG exhibited decreased network degree centrality in visual and sensorimotor brain regions and increased degree centrality in cognitive-emotional processing brain region. Additionally, the DC alterations might be complementary imaging biomarkers to assess disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kwon J, Sung KR (2017) Effect of preoperative intravitreal bevacizumab on the surgical outcome of neovascular glaucoma at different stages. J Ophthalmol 2017:7672485

    PubMed  PubMed Central  Google Scholar 

  2. Rodrigues GB, Abe RY, Zangalli C et al (2016) Neovascular glaucoma: a review. Int J Retina Vitreous 2:26

    PubMed  PubMed Central  Google Scholar 

  3. Yang H, Yu X, Sun X (2018) Neovascular glaucoma: handling in the future. Taiwan J Ophthalmol 8(2):60–66

    PubMed  PubMed Central  Google Scholar 

  4. Senthil S, Dada T, Das T et al (2021) Neovascular glaucoma - a review. Indian J Ophthalmol 69(3):525–534

    PubMed  PubMed Central  Google Scholar 

  5. Călugăru D, Călugăru M (2022) Etiology, pathogenesis, and diagnosis of neovascular glaucoma. Int J Ophthalmol 15(6):1005–1010

    PubMed  PubMed Central  Google Scholar 

  6. Wei HY, Zhang YJ, Zhao SZ (2018) Puerarin regulates neovascular glaucoma through pigment epithelium-derived growth factor-induced NF-κB signaling pathway. Mol Med Rep 17(6):7866–7874

    CAS  PubMed  Google Scholar 

  7. Zhao H, Shi Y, Liang R et al (2021) Voxel-based morphometry reveals altered gray matter volume related to cognitive dysfunctioning in neovascular glaucoma patients. ** 20(4):839–846

    Google Scholar 

  8. Susanna R Jr, De Moraes CG, Cioffi GA, Ritch R (2015) Why do people (still) go blind from glaucoma? Transl Vis Sci Techn 4(2):1

    Google Scholar 

  9. Ramirez AI, de Hoz R, Salobrar-Garcia E et al (2017) The role of microglia in retinal neurodegeneration: Alzheimer's disease, Parkinson, and glaucoma. Front Aging Neurosci 9:214

    PubMed  PubMed Central  Google Scholar 

  10. Ghiso JA, Doudevski I, Ritch R, Rostagno AA (2013) Alzheimer's disease and glaucoma: mechanistic similarities and differences. J Glaucoma 22 Suppl(5):S36–S38

    Google Scholar 

  11. Danesh-Meyer HV, Levin LA (2015) Glaucoma as a neurodegenerative disease. J Neuroophthalmol 35(Suppl 1):S22–S28

    PubMed  Google Scholar 

  12. Zhang YQ, Peng MY, Wu SN et al (2021) Fractional amplitude of low-frequency fluctuation in patients with neovascular glaucoma: a resting-state functional magnetic resonance imaging study. Quant Imaging Med Surg 11(5):2138–2150

    PubMed  PubMed Central  Google Scholar 

  13. Peng ZY, Liu YX, Li B et al (2021) Altered spontaneous brain activity patterns in patients with neovascular glaucoma using amplitude of low-frequency fluctuations: a functional magnetic resonance imaging study. Brain Behav 11(3):e2018

    Google Scholar 

  14. Yu C, Li CQ, Ge QM et al (2021) Altered resting state functional activity of brain regions in neovascular glaucoma: a resting-state functional magnetic resonance imaging study. Front Neurosci 15:800466

    PubMed  PubMed Central  Google Scholar 

  15. Zuo X, Ehmke R, Mennes M et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875

    PubMed  Google Scholar 

  16. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    PubMed  Google Scholar 

  17. Telesford QK, Simpson SL, Burdette JH, Hayasaka S, Laurienti PJ (2011) The brain as a complex system: using network science as a tool for understanding the brain. Brain Connect 1(4):295–308

    PubMed  PubMed Central  Google Scholar 

  18. Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human brain. Neuroimage 57(3):908–917

    PubMed  Google Scholar 

  19. Wu GR, Stramaglia S, Chen H, Liao W, Marinazzo D (2013) Map** the voxel-wise effective connectome in resting state FMRI. PLOS One 8(9):e73670

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuo X, **ng X (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neuroscience & Biobehavioral Reviews 45:100–118

    Google Scholar 

  21. Zhang Q, Shu Y, Li X et al (2019) Resting-state functional magnetic resonance study of primary open-angle glaucoma based on voxelwise brain network degree centrality. Neurosci Lett 712:134500

    CAS  PubMed  Google Scholar 

  22. Cai F, Gao L, Gong H et al (2015) Network centrality of resting-state fMRI in primary angle-closure glaucoma before and after surgery. PLOS One 10(10):e141389

    Google Scholar 

  23. Wang J, Wang X, **a M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Hu W, Wang H et al (2022) Altered structural brain network topology in patients with primary craniocervical dystonia. Front Neurol 13:763305

    PubMed  PubMed Central  Google Scholar 

  25. **a M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLOS One 8(7):e68910

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Keitel C, Maess B, Schröger E, Müller MM (2013) Early visual and auditory processing rely on modality-specific attentional resources. Neuroimage 70:240–249

    PubMed  Google Scholar 

  27. Lalezary M, Medeiros FA, Weinreb RN et al (2006) Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol 142(4):576–582

    PubMed  Google Scholar 

  28. Iacoboni M, Woods RP, Lenzi GL, Mazziotta JC (1997) Merging of oculomotor and somatomotor space coding in the human right precentral gyrus. Brain: J Neurol 120(9):1635–1645

    PubMed  Google Scholar 

  29. Rocca MA, Agosta F, Mezzapesa DM et al (2004) A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica. Neuroimage 21(3):1061–1068

    CAS  PubMed  Google Scholar 

  30. Silverman SE, Trick GL, Hart WM (1990) Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension. Invest Ophth Vis Sci 31(4):722–729

    CAS  Google Scholar 

  31. Wu J, Coffey M, Reidy A, Wormald R (1998) Impaired motion sensitivity as a predictor of subsequent field loss in glaucoma suspects: the Roscommon Glaucoma Study. Brit J Ophthalmol 82(5):534

    CAS  Google Scholar 

  32. Delvecchio G, Rossetti MG, Caletti E et al (2019) The neuroanatomy of somatoform disorders: a magnetic resonance imaging study. Psychosomatics 60(3):278–288

    PubMed  Google Scholar 

  33. Kimmerly DS (2017) A review of human neuroimaging investigations involved with central autonomic regulation of baroreflex-mediated cardiovascular control. Autonomic Neuroscience 207:10–21

    PubMed  Google Scholar 

  34. Bryden DW, Johnson EE, Tobia SC, Kashtelyan V, Roesch MR (2011) Attention for learning signals in anterior cingulate cortex. J Neurosci 31(50):18266–18274

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Blanchard TC, Strait CE, Hayden BY (2015) Ram** ensemble activity in dorsal anterior cingulate neurons during persistent commitment to a decision. J Neurophysiol 114(4):2439–2449

    PubMed  PubMed Central  Google Scholar 

  36. Urien L, **ao Z, Dale J, Bauer EP, Chen Z, Wang J (2018) Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation. Sci Rep-Uk 8(1):1–15

    CAS  Google Scholar 

  37. Shinoura N, Yamada R, Tabei Y et al (2013) The right dorsal anterior cingulate cortex may play a role in anxiety disorder and visual function. Neurol Res 35(1):65–70

    PubMed  Google Scholar 

  38. Ford KA, Goltz NC, Brown MR, Everling S (2005) Neural processes associated with antisaccade task performance investigated with event-related FMRI. J Neurophysiol 94(1):429–440

    PubMed  Google Scholar 

  39. Schettino A, Loeys T, Delplanque S, Pourtois G (2011) Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic map** study. Neuroimage 55(3):1227–1241

    PubMed  Google Scholar 

  40. Maunsell JH, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10(10):3323–3334

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Harenski CL, Hamann S (2006) Neural correlates of regulating negative emotions related to moral violations. Neuroimage 30(1):313–324

    PubMed  Google Scholar 

  42. Seitz RJ, Nickel J, Azari NP (2006) Functional modularity of the medial prefrontal cortex: involvement in human empathy. Neuropsychology 20(6):743–751

    PubMed  Google Scholar 

  43. Huang X, Li HJ, Peng DC et al (2019) Altered brain network centrality in patients with late monocular blindness: a resting-state fMRI study. Arch Med Sci 15(5):1301–1307

    PubMed  PubMed Central  Google Scholar 

  44. Zhang D, Fan Z, Gao X et al (2018) Illness uncertainty, anxiety and depression in Chinese patients with glaucoma or cataract. Sci Rep 8(1):11671

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81871341 and 82271945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuohua Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The protocols of this study were approved by the Local Ethics Committee on Human Research of Eye & ENT Hospital of Fudan University.

Informed Consent

All subjects participated in this study after providing written informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, R., Wang, Y. et al. The alterations of brain network degree centrality in patients with neovascular glaucoma: a resting-state fMRI study. Neurol Sci 44, 2915–2922 (2023). https://doi.org/10.1007/s10072-023-06664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06664-5

Keywords

Navigation