Log in

Shape deformations of the basal ganglia in patients with classical trigeminal neuralgia: a cross-sectional evaluation

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Introduction

Despite the involvement of subcortical brain structures in the pathogenesis of classic trigeminal neuralgia (CTN), the details of morphological abnormalities of basal ganglia to this disorder are still unknown. This study aimed to investigate potential changes in terms of volume and shape of subcortical regions in patients with CTN.

Methods

Forty-eight patients with CTN and 46 matched healthy subjects were recruited in the study. The whole-brain T1 anatomical data was acquired at a 3.0 Tesla scanner using a fast spoiled gradient recalled sequence (FSPGR). Vertex-wise analysis was applied to detect the alterations of volume and shape in each subcortical region in the patients with CTN compared to healthy controls. The relationships of morphological abnormalities in subcortical structures to the severity of orofacial pain and the affective disturbance in the patient group were examined using the multiple linear regression model.

Results

No group difference was found about volumetric measurement in any of the subcortical regions. Vertex-wise analysis revealed areas of significant shape atrophy in bilateral putamen and bilateral pallidum in the patients with CTN compared to healthy controls. Besides, the patient group exhibited shape expansion in the head of the right caudate nucleus compared to healthy subjects. In addition, shape deformation in the head of the right caudate nucleus was positively associated with VAS score in CTN.

Conclusion

The patients with CTN display shape alterations in the specific subregions of basal ganglia, which may contribute to the pathophysiology of this refractory disorder and may be useful for translational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cruccu G, Finnerup NB, Jensen TS, Scholz J, Sindou M, Svensson P et al (2016) Trigeminal neuralgia: New classification and diagnostic grading for practice and research. Neurology 87(2):220–228. https://doi.org/10.1212/wnl.0000000000002840

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cruccu G, Di Stefano G, Truini A (2020) Trigeminal neuralgia. N Engl J Med 383(8):754–762. https://doi.org/10.1056/NEJMra1914484

    Article  PubMed  Google Scholar 

  3. Bendtsen L, Zakrzewska JM, Heinskou TB, Hodaie M, Leal PRL, Nurmikko T et al (2020) Advances in diagnosis, classification, pathophysiology, and management of trigeminal neuralgia. Lancet Neurol 19(9):784–796. https://doi.org/10.1016/s1474-4422(20)30233-7

    Article  CAS  PubMed  Google Scholar 

  4. Hao Y-b, Zhang W-j, Chen M-j, Chai Y, Zhang W-h, Wei W-b (2020) Sensitivity of magnetic resonance tomographic angiography for detecting the degree of neurovascular compression in trigeminal neuralgia. Neurol Sci 41(10):2947–51. https://doi.org/10.1007/s10072-020-04419-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rapisarda A Baroni S Gentili V Moretti G Burattini B Sarlo F et al (2022) The role of biomarkers in drug-resistant trigeminal neuralgia: a prospective study in patients submitted to surgical treatment. Neuro Sci. https://doi.org/10.1007/s10072-022-05971-7

  6. Kakizawa Y, Seguchi T, Kodama K, Ogiwara T, Sasaki T, Goto T et al (2008) Anatomical study of the trigeminal and facial cranial nerves with the aid of 3.0-tesla magnetic resonance imaging. J Neurosurg 108(3):483–90. https://doi.org/10.3171/jns/2008/108/3/0483

    Article  PubMed  Google Scholar 

  7. Adamczyk M, Bulski T, Sowińska J, Furmanek A, Bekiesińska-Figatowska M (2007) Trigeminal nerve - artery contact in people without trigeminal neuralgia - MR study. Med Sci Monit Int Med J Exp Clin Res 13(Suppl 1):38–43

    Google Scholar 

  8. Ramesh VG, Premkumar G (2009) An anatomical study of the neurovascular relationships at the trigeminal root entry zone. J Clin Neurosci 16(7):934–936. https://doi.org/10.1016/j.jocn.2008.09.011

    Article  PubMed  Google Scholar 

  9. Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS et al (2013) Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage 74:352–358. https://doi.org/10.1016/j.neuroimage.2013.02.029

    Article  PubMed  Google Scholar 

  10. Wang Y, Cao D-y, Remeniuk B, Krimmel S, Seminowicz DA, Zhang M (2017) Altered brain structure and function associated with sensory and affective components of classic trigeminal neuralgia. Pain 158(8):1561–70

    Article  Google Scholar 

  11. Wang Y, Yang Q, Cao D, Seminowicz D, Remeniuk B, Gao L et al (2019) Correlation between nerve atrophy, brain grey matter volume and pain severity in patients with primary trigeminal neuralgia. Cephalalgia 39(4):515–525. https://doi.org/10.1177/0333102418793643

    Article  PubMed  Google Scholar 

  12. Noorani A, Hung PS, Zhang JY, Sohng K, Laperriere N, Moayedi M et al (2022) Pain relief reverses hippocampal abnormalities in trigeminal neuralgia. J Pain 23(1):141–155. https://doi.org/10.1016/j.jpain.2021.07.004

    Article  PubMed  Google Scholar 

  13. Li M, Yan J, Li S, Wang T, Zhan W, Wen H et al (2017) Reduced volume of gray matter in patients with trigeminal neuralgia. Brain Imaging Behav 11(2):486–492. https://doi.org/10.1007/s11682-016-9529-2

    Article  PubMed  Google Scholar 

  14. Tsai YH, Yuan R, Patel D, Chandrasekaran S, Weng HH, Yang JT et al (2018) Altered structure and functional connection in patients with classical trigeminal neuralgia. Hum Brain Mapp 39(2):609–621

    Article  Google Scholar 

  15. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922. https://doi.org/10.1016/j.neuroimage.2011.02.046

    Article  PubMed  Google Scholar 

  16. Reckziegel D, Abdullah T, Wu B, Wu B, Huang L, Schnitzer TJ et al (2021) Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 162(5):1457–1467. https://doi.org/10.1097/j.pain.0000000000002143

    Article  CAS  PubMed  Google Scholar 

  17. Mao CP, Bai ZL, Zhang XN, Zhang QJ, Zhang L (2016) Abnormal subcortical brain morphology in patients with knee osteoarthritis: a cross-sectional study. Front Aging Neurosci 8:3. https://doi.org/10.3389/fnagi.2016.00003

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu H Tao Y Zhu P Li D Zhang M Bai G et al (2021) Restoration of aberrant shape of caudate sub-regions associated with cognitive function improvement in mild traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2021.0426

  19. Xu H, Guo C, Luo F, Sotoodeh R, Zhang M, Wang Y (2019) Subcortical brain abnormalities and clinical relevance in patients with hemifacial spasm. Front Neurol 10:1383. https://doi.org/10.3389/fneur.2019.01383

    Article  PubMed  Google Scholar 

  20. Yang Q, Xu H, Zhang M, Wang Y, Li D (2020) Volumetric and functional connectivity alterations in patients with chronic cervical spondylotic pain. Neuroradiology 62(8):995–1001. https://doi.org/10.1007/s00234-020-02413-z

    Article  PubMed  Google Scholar 

  21. Li D Xu H Yang Q Zhang M Wang Y. Cerebral white matter alterations revealed by multiple diffusion metrics in cervical spondylotic patients with pain: a TBSS study. Pain Med. 2021. https://doi.org/10.1093/pm/pnab227

  22. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl Neuroimage 62(2):782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  23. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489

    Article  Google Scholar 

  24. Mao CP, Yang HJ (2015) Smaller amygdala volumes in patients with chronic low back pain compared with healthy control individuals. J Pain 16(12):1366–1376. https://doi.org/10.1016/j.jpain.2015.08.012

    Article  PubMed  Google Scholar 

  25. Chudler EH, Dong WK (1995) The role of the basal ganglia in nociception and pain. Pain 60(1):3–38. https://doi.org/10.1016/0304-3959(94)00172-b

    Article  PubMed  Google Scholar 

  26. Borsook D, Upadhyay J, Chudler EH, Becerra L (2010) A key role of the basal ganglia in pain and analgesia–insights gained through human functional imaging. Mol Pain 6:27. https://doi.org/10.1186/1744-8069-6-27

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lim M, O’Grady C, Cane D, Goyal A, Lynch M, Beyea S et al (2020) Threat prediction from schemas as a source of bias in pain perception. J Neurosci 40(7):1538–1548. https://doi.org/10.1523/jneurosci.2104-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA (2011) Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci 31(16):5956–5964. https://doi.org/10.1523/jneurosci.5980-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78(2):69–74. https://doi.org/10.1016/j.brainresbull.2008.09.013

    Article  PubMed  Google Scholar 

  30. Starr CJ, Sawaki L, Wittenberg GF, Burdette JH, Oshiro Y, Quevedo AS et al (2011) The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions. Brain 134(Pt 7):1987–2004. https://doi.org/10.1093/brain/awr117

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwab BC, van Wezel RJ, van Gils SA (2017) Sparse pallidal connections shape synchrony in a network model of the basal ganglia. Eur J Neurosci 45(8):1000–1012

    Article  Google Scholar 

  32. Haber SN (2014) The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 282:248–257. https://doi.org/10.1016/j.neuroscience.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  33. Bishop JH, Shpaner M, Kubicki A, Clements S, Watts R, Naylor MR (2018) Structural network differences in chronic muskuloskeletal pain: Beyond fractional anisotropy. Neuroimage 182:441–455. https://doi.org/10.1016/j.neuroimage.2017.12.021

    Article  PubMed  Google Scholar 

  34. Absinta M, Rocca MA, Colombo B, Falini A, Comi G, Filippi M (2012) Selective decreased grey matter volume of the pain-matrix network in cluster headache. Cephalalgia 32(2):109–115. https://doi.org/10.1177/0333102411431334

    Article  PubMed  Google Scholar 

  35. Opris I, Lebedev M, Nelson RJ (2011) Motor planning under unpredictable reward: modulations of movement vigor and primate striatum activity. Front Neurosci 5:61. https://doi.org/10.3389/fnins.2011.00061

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86(3):141–155. https://doi.org/10.1016/j.pneurobio.2008.09.004

    Article  PubMed  Google Scholar 

  37. Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16(10):1508–1521. https://doi.org/10.1093/cercor/bhj088

    Article  PubMed  Google Scholar 

  38. Schmidt-Wilcke T (2008) Variations in brain volume and regional morphology associated with chronic pain. Curr Rheumatol Rep 10(6):467–474. https://doi.org/10.1007/s11926-008-0077-7

    Article  PubMed  Google Scholar 

  39. Rodgers HM Patton R Yow J Zeczycki TN Kew K Clemens S et al (2021) Morphine resistance in spinal cord injury-related neuropathic pain in rats is associated with alterations in dopamine and dopamine-related metabolomics. J Pain. https://doi.org/10.1016/j.jpain.2021.11.009

  40. Hagelberg N, Martikainen IK, Mansikka H, Hinkka S, Någren K, Hietala J et al (2002) Dopamine D2 receptor binding in the human brain is associated with the response to painful stimulation and pain modulatory capacity. Pain 99(1–2):273–279. https://doi.org/10.1016/s0304-3959(02)00121-5

    Article  CAS  PubMed  Google Scholar 

  41. Fu J, Mu G, Qiu L, Zhao J, Ou C (2020) c-Abl-p38α signaling pathway mediates dopamine neuron loss in trigeminal neuralgia. Mol Pain 16:1744806920930855. https://doi.org/10.1177/1744806920930855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burkey AR, Carstens E, Jasmin L (1999) Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. J Neurosci 19(10):4169–4179. https://doi.org/10.1523/jneurosci.19-10-04169.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Admon R, Holsen LM, Aizley H, Remington A, Whitfield-Gabrieli S, Goldstein JM et al (2015) Striatal hypersensitivity during stress in remitted individuals with recurrent depression. Biol Psychiatry 78(1):67–76. https://doi.org/10.1016/j.biopsych.2014.09.019

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (82171909), the Key Research and Development Program of Shaanxi (No. 2021SF-091), and the Clinical Research Award of the First Affiliated Hospital of **’an Jiaotong University (No. XJTU1AF-CRF-2020–017).

Author information

Authors and Affiliations

Authors

Contributions

H. X. and Y. W. conceived the study, designed the trial, and obtained research funding. H. X. and M. Z. supervised the conduct of the trial and data collection. H. X. provided statistical advice on the study design and analyzed the data; H. X. and Y. W. drafted the manuscript, and all authors contributed substantially to its revision. Y. W. took responsibility for the paper as a whole.

Corresponding author

Correspondence to Yuan Wang.

Ethics declarations

Ethics approval and consent to participate

This study was approved and consented to by the Ethics Committee of the First Affiliated Hospital of **’an Jiaotong University. Informed consent was obtained from all individual participants according to the Declaration of Helsinki.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, M. & Wang, Y. Shape deformations of the basal ganglia in patients with classical trigeminal neuralgia: a cross-sectional evaluation. Neurol Sci 43, 5007–5015 (2022). https://doi.org/10.1007/s10072-022-06091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06091-y

Keywords

Navigation