Log in

Research trends of next generation probiotics

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Gut represents one of the largest interfaces for the interaction of host factors and the environmental ones. Gut microbiota, largely dominated by bacterial community, plays a significant role in the health status of the host. The healthy gut microbiota fulfills several vital functions such as energy metabolism, disease protection, and immune modulation. Dysbiosis, characterized by microbial imbalance, can contribute to the development of various disorders, including intestinal, systemic, metabolic, and neurodegenerative conditions. Probiotics offer the potential to address dysbiosis and improve overall health. Advancements in high-throughput sequencing, bioinformatics, and omics have enabled mechanistic studies for the development of bespoke probiotics, referred to as next generation probiotics. These tailor-made probiotics have the potential to ameliorate specific disease conditions and thus fulfill the specific consumer needs. This review discusses recent updates on the most promising next generation probiotics, along with the challenges that must be addressed to translate this concept into reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggarwal N, Breedon AME, Davis CM, Hwang IY, Chang MW. Engineering probiotics for therapeutic applications: recent examples and translational outlook. Current Opinion in Biotechnology. 65: 171-179 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Almeida D, Machado D, Andrade JC, Mendo S, Gomes AM, Freitas AC. Evolving trends in next-generation probiotics: a 5W1H perspective. Critical Reviews in Food Science and Nutrition. 60: 1783-1796 (2020).

    Article  PubMed  Google Scholar 

  • Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A, Hadifar S, Yaghoubfar R, Ahmadi Badi S, Khatami S, Vaziri F, Siadat SD. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Frontiers in Microbiology. 10: 2155 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bárcena C, Valdés-Mas R, Mayoral P, Garabaya C, Durand S, Rodríguez F, Fernández-García MT, Salazar N, Nogacka AM, Garatachea N, Bossut N, Aprahamian F, Lucia A, Kroemer G, Freije JMP, Quirós PM, López-Otín C. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine. 25: 1234-1242 (2019).

    Article  PubMed  Google Scholar 

  • Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 535: 85-93 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 42: 2 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III—convergence toward clinical trials. Gut Pathogens. 5: 4 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 54: 2325-2340 (2013).

    Article  Google Scholar 

  • Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M, Kleimeyer C, Moresi C, Harnik Y, Zur M, Zabari M, Brik RB-Z, Kviatcovsky D, Zmora N, Cohen Y, Bar N, Levi I, Amar N, Mehlman T, Brandis A, Biton I, Kuperman Y, Tsoory M, Alfahel L, Harmelin A, Schwartz M, Israelson A, Arike L, Johansson ME V, Hansson GC, Gotkine M, Segal E, Elinav E. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 572: 474-480 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Blüher M. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology. 15: 288-298 (2019).

    Article  PubMed  Google Scholar 

  • Bober JR, Beisel CL, Nair NU. Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications. Annual Review of Biomedical Engineering. 20: 277-300 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Frontiers in Microbiology. 8: 1765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang C-J, Lin T-L, Tsai Y-L, Wu T-R, Lai W-F, Lu C-C, Lai H-C. Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis. 27: 615-622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbonneau MR, Isabella VM, Li N, Kurtz CB. Develo** a new class of engineered live bacterial therapeutics to treat human diseases. Nature Communications. 11: 1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzidaki-Livanis M, Coyne MJ, Comstock LE. An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins. Molecular Microbiology. 94: 1361-1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelakkot C, Choi Y, Kim D-K, Park HT, Ghim J, Kwon Y, Jeon J, Kim M-S, Jee Y-K, Gho YS, Park H-S, Kim Y-K, Ryu SH. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Experimental & Molecular Medicine. 50: e450 (2018).

    Article  CAS  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 148: 1258-1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coherent Market Insights. Next generation probiotics market analysis. Available at: https://www.coherentmarketinsights.com/market-insight/next-generation-probiotics-market-5468 (Accessed on May 20, 2024).

  • Collado MC, Derrien M, Isolauri E, De Vos WM, Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Applied and Environmental Microbiology. 73: 7767-7770 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Simone C. The unregulated probiotic market. Clinical Gastroenterology and Hepatology. 17: 809-817 (2019).

    Article  PubMed  Google Scholar 

  • Dehghanbanadaki H, Aazami H, Keshavarz Azizi Raftar S, Ashrafian F, Ejtahed H-S, Hashemi E, Hoseini Tavassol Z, Ahmadi Badi S, Siadat SD. Global scientific output trend for Akkermansia muciniphila research: a bibliometric and scientometric analysis. BMC Medical Informatics and Decision Making. 20: 291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic acid bacteria as a live delivery system for the in-situ production of nanobodies in the human gastrointestinal tract. Frontiers in Microbiology. 9: 3179 (2019).

    Article  PubMed Central  Google Scholar 

  • Deng H, Li Z, Tan Y, Guo Z, Liu Y, Wang Y, Yuan Y, Yang R, Bi Y, Bai Y, Zhi F. A novel strain of Bacteroides fragilis enhances phagocytosis and polarises M1 macrophages. Scientific Reports. 6: 29401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Yang S, Zhang Y, Qian K, Zhang Z, Liu Y, Wang Y, Bai Y, Fan H, Zhao X, Zhi F. Bacteroides fragilis prevents Clostridium difficile infection in a mouse model by restoring gut barrier and microbiome regulation. Frontiers in Microbiology. 9: 2976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Depommier C, Everard A, Druart C, Maiter D, Thissen J-P, Loumaye A, Hermans MP, Delzenne NM, de Vos WM, Cani PD. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes. 13: 1994270 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, de Barsy M, Loumaye A, Hermans MP, Thissen J-P, de Vos WM, Cani PD. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine. 25: 1096-1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology. 54: 1469-1476 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Derrien M, Van Baarlen P, Hooiveld G, Norin E, Müller M, de Vos WM. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Frontiers in Microbiology. 2: 166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis. 106: 171-181 (2017).

    Article  PubMed  Google Scholar 

  • Dou J, Bennett MR. Synthetic biology and the gut microbiome. Biotechnology Journal. 13: 1700159 (2018).

    Article  Google Scholar 

  • Dubey MR, Patel VP. Probiotics: a promising tool for calcium absorption. The Open Nutrition Journal. 12: 59-69 (2018).

    Article  CAS  Google Scholar 

  • Dubourg G, Lagier J-C, Armougom F, Robert C, Audoly G, Papazian L, Raoult D. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. International Journal of Antimicrobial Agents. 41: 149-155 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology. 70: 5810-5817 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA Panel on Nutrition NF and FA (NDA), Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Ackerl R, Knutsen HK. Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal. 19: e06780 (2021)

  • Eisenstein M. The hunt for a healthy microbiome. Nature. 577: S6-S8 (2020).

    Article  Google Scholar 

  • El-Saadony MT, Alagawany M, Patra AK, Kar I, Tiwari R, Dawood MAO, Dhama K, Abdel-Latif HMR. The functionality of probiotics in aquaculture: an overview. Fish & Shellfish Immunology. 117: 36-52 (2021).

    Article  Google Scholar 

  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, De Vos WM, Cani PD. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America. 110: 9066-9071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fekry MI, Engels C, Zhang J, Schwab C, Lacroix C, Sturla SJ, Chassard C. The strict anaerobic gut microbe Eubacterium hallii transforms the carcinogenic dietary heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Environmental Microbiology Reports. 8: 201-209 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Halder CV, Faria AVS, Andrade SS. Action and function of Faecalibacterium prausnitzii in health and disease. Best Practice & Research Clinical Gastroenterology. 31: 643-648 (2017).

    Article  CAS  Google Scholar 

  • Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. Journal of Gastroenterology and Hepatology. 28: 613-619 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Gaike AH, Paul D, Bhute S, Dhotre DP, Pande P, Upadhyaya S, Reddy Y, Sampath R, Ghosh D, Chandraprabha D, Acharya J, Banerjee G, Sinkar VP, Ghaskadbi SS, Shouche YS. The gut microbial diversity of newly diagnosed diabetics but not of prediabetics is significantly different from that of healthy nondiabetics. mSystems. 5: 00578-19 (2020).

    Article  Google Scholar 

  • Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 352: 539-544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L, Gyongyosi B, Ward D V, Grabherr F, Gerner RR, Pfister A, Enrich B, Ciocan D, Macheiner S, Mayr L, Drach M, Moser P, Moschen AR, Perlemuter G, Szabo G, Cassard AM, Tilg H. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut. 67: 891 (2018).

    Article  PubMed  Google Scholar 

  • Guida F, Turco F, Iannotta M, De Gregorio D, Palumbo I, Sarnelli G, Furiano A, Napolitano F, Boccella S, Luongo L, Mazzitelli M, Usiello A, De Filippis F, Iannotti FA, Piscitelli F, Ercolini D, de Novellis V, Di Marzo V, Cuomo R, Maione S. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain, Behavior, and Immunity. 67: 230-245 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Hänninen A, Toivonen R, Pöysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, Vos WM De. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice mice. Gut. 67: 1445 (2018).

    Article  PubMed  Google Scholar 

  • Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Current Opinion in Gastroenterology. 26: 564-571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen CHF, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, Buschard K, Hansen AK. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 55: 2285-2294 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, Neher JJ, Fåk F, Jucker M, Lasser T, Bolmont T. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Scientific Reports. 7: 41802 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology. 11: 506-514 (2014).

    Article  PubMed  Google Scholar 

  • Hirano A, Umeno J, Okamoto Y, Shibata H, Ogura Y, Moriyama T, Torisu T, Fujioka S, Fuyuno Y, Kawarabayasi Y, Matsumoto T, Kitazono T, Esaki M. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. Journal of Gastroenterology and Hepatology. 33: 1590-1597 (2018).

    Article  CAS  Google Scholar 

  • Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Applied and Environmental Microbiology. 69: 4320-4324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongying F, Zhenhui C, Ruqin L, Yangyang L, **anbo W, Santhosh P, Ye W, Bo Z, Qiwei Z, Yang B, Fachao Z. Bacteroides fragilis strain ZY-312 defense against Cronobacter sakazakii-induced necrotizing enterocolitis in vitro and in a neonatal rat model. mSystems (2019). https://doi.org/10.1128/msystems.00305-19.

    Article  Google Scholar 

  • IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: estimates for the year 2013. Diabetes Research and Clinical Practice. 109: 461-465 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Ishak AA, Selamat J, Sulaiman R, Sukor R, Abdulmalek E, Jambari NN. Effect of different amino acids and heating conditions on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and its kinetics formation using chemical model system. Molecules. 24: 3828 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian H, Liu Y, Wang X, Dong X, Zou X. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: a role mediated by gut–liver–brain axes? International Journal of Molecular Sciences. 24: 3900 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhas M, Reuß DR, Zhu B, Commichau FM. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology. 160: 2341-2351 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Kang MJ, Jeong H, Kim S, Shin J, Song Y, Lee B-H, Park H-G, Lee T-H, Jiang H-H, Han Y-S, Lee B-G, Lee H-J, Park M-J, Park Y-S. Structural analysis and prebiotic activity of exopolysaccharide produced by probiotic strain Bifidobacterium bifidum EPS DA-LAIM. Food Science and Biotechnology. 32: 517-529 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management–fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 11: 1518-1530 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: a microbiome-gut–brain axis disorder? World Journal of Gastroenterology: WJG. 20: 14105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MT, Dwibedi C, Sundh D, Pradhan M, Kraft JD, Caesar R, Tremaroli V, Lorentzon M, Bäckhed F. Synergy and oxygen adaptation for development of next-generation probiotics. Nature. 620: 381-385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruyer NS, Realff MJ, Sun W, Genzale CL, Peralta-Yahya P. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nature Communications. 12: 6166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang S, Fairfied B, Gao B, Duan Y, Zhang X, Fouts DE, Schnabl B. Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes. 12: 1785251 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology. 24: 160-168 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Deng H, Zhou Y, Tan Y, Wang X, Han Y, Liu Y, Wang Y, Yang R, Bi Y, Zhi F. Bioluminescence imaging to track Bacteroides fragilis inhibition of Vibrio parahaemolyticus infection in mice. Frontiers in Cellular and Infection Microbiology. 7: 170 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, **ao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen O, Doré J, Ehrlich SD, Bork P, Wang J, Pons N, Le Chatelier E, Batto JM, Kennedy S, Haimet F, Winogradski Y, Pelletier E, Lepaslier D, Artiguenave F, Bruls T, Weissenbach J, Turner K, Parkhill J, Antolin M, Casellas F, Borruel N, Varela E, Torrejon A, Denariaz G, Derrien M, van Hylckama Vlieg JET, Viega P, Oozeer R, Knoll J, Rescigno M, Brechot C, M’rini C, Mérieux A, Yamada T, Tims S, Zoetendal EG, Kleerebezem M, de Vos WM, Cultrone A, Leclerc M, Juste C, Guedon E, Delorme C, Layec S, Khaci G, van de Guchte M, Vandemeulebrouck G, Jamet A, Dervyn R, Sanchez N, Blottière H, Maguin E, Renault P, Tap J, Mende DR. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology. 32: 834-841 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Peng Y, Shen Y, Zhang Y, Liu L, Yang X. Dietary polyphenols: regulate the advanced glycation end products—RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Critical Reviews in Food Science and Nutrition. 63: 9816-9842 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Rezende RM, Moreira TG, Tankou SK, Cox LM, Wu M, Song A, Dhang FH, Wei Z, Costamagna G, Weiner HL. Oral administration of miR-30d from feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphila. Cell Host & Microbe. 26: 779-794.e8 (2019).

    Article  CAS  Google Scholar 

  • Liu S, Hu W, Wang Z, Chen T. Rational engineering of Escherichia coli for high-level production of riboflavin. Journal of Agricultural and Food Chemistry. 69: 12241-12249 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters. 294: 1-8 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environmental Microbiology. 12: 304-314 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Wu Z, Xu W, Yang J, Chen Y, Li L. Intestinal microbiota was assessed in cirrhotic patients with Hepatitis B virus infection. Microbial Ecology. 61: 693-703 (2011).

    Article  PubMed  Google Scholar 

  • Luo ZW, Lee SY. Metabolic engineering of Escherichia coli for the production of benzoic acid from glucose. Metabolic Engineering. 62: 298-311 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li C, Wang J, Gu J. Genetically engineered Escherichia coli Nissle 1917 secreting GLP-1 analog exhibits potential anti-obesity effect in high-fat diet-induced obesity mice. Obesity. 28: 315-322 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Lyu Y, Liu X, Jia X, Cui F, Wu X, Deng S, Yue C. Engineered probiotics. Microbial Cell Factories. 21: 72 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Maftei N-M, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The potential impact of probiotics on human health: an update on their health-promoting properties. Microorganisms. 12: 234 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makras L, De Vuyst L. The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. International Dairy Journal. 16: 1049-1057 (2006).

    Article  CAS  Google Scholar 

  • Martin A, Devkota S. Hold the door: role of the gut barrier in diabetes. Cell Metabolism. 27: 949-951 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Mathipa MG, Thantsha MS, Bhunia AK. Lactobacillus casei expressing Internalins A and B reduces Listeria monocytogenes interaction with Caco-2 cells in vitro. Microbial Biotechnology. 12: 715-729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H, Ba Z, Lee Y, Peng J, Lin J, Fleming JA, Furumoto EJ, Roberts RF, Kris-Etherton PM, Rogers CJ. Consumption of Bifidobacterium animalis subsp. lactis BB-12 in yogurt reduced expression of TLR-2 on peripheral blood-derived monocytes and pro-inflammatory cytokine secretion in young adults. European Journal of Nutrition. 56: 649-661 (2017).

    Article  PubMed  Google Scholar 

  • Miller PL, Carson TL. Mechanisms and microbial influences on CTLA-4 and PD-1-based immunotherapy in the treatment of cancer: a narrative review. Gut Pathogens. 12: 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, Hudault S, Bridonneau C, Northene T, Bowene B, Bermúdez-Humarán LG, Sokol H, Thomas M, Langella P. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio. 6: 1-10 (2015).

    Article  CAS  Google Scholar 

  • Lopez-Siles M, Martinez-Medina M, Abellà C, Busquets D, Sabat-Mir M, Duncan SH, Aldeguer X, Flint HJ, Garcia-Gil LJ. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Applied and Environmental Microbiology. 81: 7582-7592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugwanda K, Hamese S, Van Zyl WF, Prinsloo E, Du Plessis M, Dicks LMT, Thimiri Govinda Raj DB. Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Bioscience Reports. 43: BSR20211299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natividad JMM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacological Research. 69: 42-51 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Neef A, Sanz Y. Future for probiotic science in functional food and dietary supplement development. Current Opinion in Clinical Nutrition & Metabolic Care. 16: 679-687 (2013).

    Article  CAS  Google Scholar 

  • Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Meta-analysis of gut dysbiosis in Parkinson’s disease. Movement Disorders. 35: 1626-1635 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Tsuzuki Y, Hokari R, Komoto S, Kurihara C, Kawaguchi A, Nagao S, Miura S. Anti-inflammatory effects of the genus Bifidobacterium on macrophages by modification of phospho-IκB and SOCS gene expression. International Journal of Experimental Pathology. 90: 131-140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature Microbiology. 2: 17057 (2017).

    Article  PubMed  Google Scholar 

  • Ou Z, Deng L, Lu Z, Wu F, Liu W, Huang D, Peng Y. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutrition & Diabetes. 10: 12 (2020).

    Article  CAS  Google Scholar 

  • Ouwerkerk JP, Aalvink S, Belzer C, de Vos WM. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces. International Journal of Systematic and Evolutionary Microbiology. 66: 4614-4620 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Paramsothy S, Nielsen S, Kamm MA, Deshpande NP, Faith JJ, Clemente JC, Paramsothy R, Walsh AJ, van den Bogaerde J, Samuel D, Leong RWL, Connor S, Ng W, Lin E, Borody TJ, Wilkins MR, Colombel J-F, Mitchell HM, Kaakoush NO. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology. 156: 1440-1454.e2 (2019).

    Article  PubMed  Google Scholar 

  • Pinto-Cardoso S, Lozupone C, Briceño O, Alva-Hernández S, Téllez N, Adriana A, Murakami-Ogasawara A, Reyes-Terán G. Fecal bacterial communities in treated HIV infected individuals on two antiretroviral regimens. Scientific Reports. 7: 43741 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, Myridakis A, Delzenne NM, Klievink J, Bhattacharjee A, van der Ark KCH, Aalvink S, Martinez LO, Dumas M-E, Maiter D, Loumaye A, Hermans MP, Thissen J-P, Belzer C, de Vos WM, Cani PD. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine. 23: 107-113 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Remely M, Hippe B, Zanner J, Aumueller E, Brath H, Haslberger AG. Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocrine, Metabolic & Immune Disorders-Drug Targets. 16: 99-106 (2016).

    Article  CAS  Google Scholar 

  • Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: a review. Food Chemistry: X. 13: 100196 (2022).

    CAS  PubMed  Google Scholar 

  • Rossi O, Van Berkel LA, Chain F, Tanweer Khan M, Taverne N, Sokol H, Duncan SH, Flint HJ, Harmsen HJM, Langella P, Samsom JN, Wells JM. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Scientific Reports. 6: 18507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusch JA, Layden BT, Dugas LR. Signaling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Frontiers in Endocrinology. 14: 1130689 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Saarela MH. Safety aspects of next generation probiotics. Current Opinion in Food Science. 30: 8-13 (2019).

    Article  Google Scholar 

  • Sana TG, Lugo KA, Monack DM. T6SS: the bacterial ‘fight club’ in the host gut. PLOS Pathogens. 13: e1006325 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerenwinkel N, Lacroix C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during l-fucose and fucosyllactose degradation. Frontiers in Microbiology. 8: 95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology. 14: e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu Y, Isoda K, Taira Y, Taira I, Kondoh M, Ishida I. Anti-tumor effect of a recombinant Bifidobacterium strain secreting a claudin-targeting molecule in a mouse breast cancer model. European Journal of Pharmacology. 887: 173596 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW, Lee M-S, Bae J-W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 63: 727 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Agarwal V. Screening of antimicrobial, anti-quorum sensing activity and cytotoxicity of origanum oil against Gram-positive and Gram-negative bacteria. Biomedicine (India). 41: 599-603 (2021).

    Google Scholar 

  • Singh D, Agarwal V. Herbal antibacterial remedy against upper respiratory infection causing bacteria and in vivo safety analysis. Vegetos. 35: 264-268 (2022).

    Article  Google Scholar 

  • Singh D, Sharma D, Agarwal V. Screening of anti-microbial, anti-biofilm activity, and cytotoxicity analysis of a designed polyherbal formulation against shigellosis. Journal of Ayurveda and Integrative Medicine. 12: 601-606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sniffen JC, McFarland L V, Evans CT, Goldstein EJC. Choosing an appropriate probiotic product for your patient: an evidence-based practical guide. PLoS ONE. 13: e0209205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soemarie YB, Milanda T, Barliana MI. Fermented foods as probiotics: a review. Journal of Advanced Pharmaceutical Technology and Research. 12: 335-339 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases. 15: 1183-1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Sola-Oladokun B, Culligan EP, Sleator RD. Engineered probiotics: applications and biological containment. Annual Review of Food Science and Technology. 8: 353-370 (2017).

    Article  PubMed  Google Scholar 

  • Son J, Jang SH, Cha JW, Jeong KJ. Development of CRISPR interference (CRISPRi) platform for metabolic engineering of Leuconostoc citreum and its application for engineering riboflavin biosynthesis. International Journal of Molecular Sciences. 21: 1-13 (2020).

    Article  Google Scholar 

  • Sun F, Zhang Q, Zhao J, Zhang H, Zhai Q, Chen W. A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Research International. 126: 108590 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Swidsinski A, Loening-Baucke V, Vaneechoutte M, Doerffel Y. Active Crohn’s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflammatory Bowel Diseases. 14: 147-161 (2008).

    Article  PubMed  Google Scholar 

  • Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman S, Tengeler AC, Barak O, Elazar M, Ben-Zeev R, Lehavi-Regev D, Katz MN, Pevsner-Fischer M, Gertler A, Halpern Z, Harmelin A, Aamar S, Serradas P, Grosfeld A, Shapiro H, Geiger B, Elinav E. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 359: 1376-1383 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM, Duncan SH, Stroes ESG, Groen AK, Flint HJ, Backhed F, de Vos WM, Nieuwdorp M. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. npj Biofilms and Microbiomes. 2: 16009 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulsemer P, Toutounian K, Kressel G, Goletz C, Schmidt J, Karsten U, Hahn A, Goletz S. Impact of oral consumption of heat-treated Bacteroides xylanisolvens DSM 23964 on the level of natural TFa-specific antibodies in human adults. Beneficial Microbes. 7: 485-500 (2016).

    Article  CAS  PubMed  Google Scholar 

  • van der Lugt B, van Beek AA, Aalvink S, Meijer B, Sovran B, Vermeij WP, Brandt RMC, de Vos WM, Savelkoul HFJ, Steegenga WT, Belzer C. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1−/Δ7 mice. Immunity & Ageing. 16: 6 (2019).

    Article  Google Scholar 

  • Vernay T, Cannie I, Gaboriau F, Gall SD-L, Tamanai-Shacoori Z, Burel A, Jolivet-Gougeon A, Loréal O, Bousarghin L. Bacteroides fragilis prevents Salmonella heidelberg translocation in co-culture model mimicking intestinal epithelium. Beneficial Microbes. 11: 391-401 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Christophersen CT, Sorich M, Gerber JP, T AM, Conlon MA. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Applied and Environmental Microbiology. 77: 6718-6721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng H, Li Z, Tan Y, Han Y, Wang X, Du Z, Liu Y, Yang R, Bai Y, Bi Y, Zhi F. Safety evaluation of a novel strain of Bacteroides fragilis. Frontiers in Microbiology. 8: 435 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Wrzosek L, Miquel S, Noordine M-L, Bouet S, Chevalier-Curt MJ, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biology. 11: 61 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang N, Tan H-Y, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Frontiers in Microbiology. 11: 219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, Takahashi Y, Momose Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology. 218: 645-651 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Zhai Q, Feng S, Arjan N, Chen W. A next generation probiotic, Akkermansia muciniphila. Critical Reviews in Food Science and Nutrition. 59: 3227-3236 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zhai Q, Qu D, Feng S, Yu Y, Yu L, Tian F, Zhao J, Zhang H, Chen W. Oral supplementation of lead-intolerant intestinal microbes protects against lead (Pb) toxicity in mice. Frontiers in Microbiology. 10: 3161 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Qiu X, Zhang H, Yang X, Hong N, Yang Y, Chen H, Yu C. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS ONE. 9: e109146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Duan Y, Cai F, Cao D, Wang L, Qiao Z, Hong Q, Li N, Zheng Y, Su M, Liu Z, Zhu B. Next-generation probiotics: microflora intervention to human diseases. BioMed Research International. 2022: 5633403 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Wen XL. Gut microbiota and inflammatory bowel disease: the current status and perspectives. World Journal of Clinical Cases. 9: 321-333 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J-C, Zhang X-W. Akkermansia muciniphila: a promising target for the therapy of metabolic syndrome and related diseases. Chinese Journal of Natural Medicines. 17: 835-841 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhang M, Wang Y, Dorfman RG, Liu H, Yu T, Chen X, Tang D, Xu L, Yin Y, Pan Y, Zhou Q, Zhou Y, Yu C. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflammatory Bowel Diseases. 24: 1926-1940 (2018).

    Article  PubMed  Google Scholar 

  • Zion Market Research. Probiotics Market Size, Share, Growth Report 2030. Available at https://www.zionmarketresearch.com/toc/probiotics-market (Accessed on May 20, 2024).

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00244482). This research was also supported by the BK21 FOUR (Fostering Outstanding Universities for Research) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF). The authors also thanks to Hafiza Hira Bashir for helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Seong Moon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnain, M.A., Kang, D. & Moon, GS. Research trends of next generation probiotics. Food Sci Biotechnol (2024). https://doi.org/10.1007/s10068-024-01626-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10068-024-01626-9

Keywords

Navigation