Log in

A comprehensive review and potential guidance on the reliability of landslide evaluation approaches in Central, Northern, and Northwestern Highlands, Ethiopia

  • Review Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The growing popularity of GIS technology in Ethiopia has encouraged multiple scholars to investigate landslide hazards using quantitative approaches, despite its limitations. The present review examined the approach used in the evaluation of landslide hazards by five prior studies that shared catchments. The review results reveal that the controlling factors assumed by the five researchers were inconsistent and resulted in highly divergent frequency ratio (FR) values, even for the same factors. This implies that the contribution of a single instability factor can be inferred sufficiently for landslide hazard assessment and map**; otherwise, the results are highly subjective and disputable. Since the soil type in the region was alluvial-colluvial in the five studies, and a majority of the failures occurred shortly after rainfall, rainfall data and basic soil properties (classification and shear strength) should not be overlooked. In addition to the nonstandard use of morphometric parameters, the inherent limits of GIS methodologies, the omission of hydrogeotechnical properties, and the observed subjective outcomes make the GIS-based approach imprecise, error-prone, and doubtful. The total effect will result in ineffective early warning systems and unworthy mitigation measures, resulting in significant life costs and damage. As a result, it is recommended that GIS technology should be coupled with software (TRIGRS, Scoops3D, SINMAP, OpenLISEM, GLM, and SLIP) that considers hydrogeotechnical properties to provide more reliable conclusions. In addition to using instability factors consistently, regional statistical correlations of all morphometric parameters can be developed, allowing for less complex and realistic empirical models to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Parameter significance and validation assessment will be conducted in the next study.

References 

  • Abay A, Barbieri G (2012) Landslide susceptibility and causative factors evaluation of the landslide area of Debresina, in the southwestern Afar escarpment, Ethiopia. J Earth Sci Eng 2:133–144

    Google Scholar 

  • Abayneh E, Berhanu D (2007) Soil survey in Ethiopia: past, present and the future, in: Proceedings of the 8th Conference of the Ethiopian Society of Soil Science, Soils for sustainable development, 27–28 April, 2006, Addis Ababa, Ethiopia

  • Abayneh E (2001) Application of geographic information system (GIS) for soil resource study in Ethiopia, in: Proceedings of the National Sensitization Workshop on Agro metrology and GIS, 17–18. December 2001, Addis Ababa, Ethiopia, 162–169

  • Abayneh E (2005) Characteristics, Genesis and Classification of Reddish Soils from Sidamo Region of Ethiopia, PhD Thesis, Universiti Putra Malaysia

  • Abbate E, Bruni P, Sagri M, Billi P (2015) Landscapes and landforms of Ethiopia geology of Ethiopia: a review and geomorphological perspectives Springer Netherlands Dordrecht 33–64

  • Abebe B, Acocella V, Korme T, Ayalew D (2007) Quaternary faulting and volcanism in the Main Ethiopian Rift. J Afr Earth Sci 48:115–124

    Article  Google Scholar 

  • Abebe B, Dramis F, Fubelli G, Umer M, Asrat A (2010) Landslides in the Ethiopian highlands and the Rift margins. J Afr Earth Sci 56:131–138

    Article  Google Scholar 

  • Addis A (2023) GIS-based landslide susceptibility map** using frequency ratio and shannon entropy models in Dejen District, Northwestern Ethiopia. Hindawi J Eng 2023(Article ID 1062388). https://doi.org/10.1155/2023/1062388

  • Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in develo** countries. Geomorphology 47:107–124

    Article  Google Scholar 

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265

    Article  Google Scholar 

  • Ali A, Tamene L, Erkossa T (2020) Identifying, cataloguing, and map** soil and agronomic data in Ethiopia, CIAT Publication No. 506, International Center for Tropical Agriculture (CIAT), Addis Ababa, Ethiopia. https://hdl.handle.net/10568/110868

  • Alonso EE, Gens A, Delahaye CH (2003) Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study. Hydrogeol J 11(1):174–192

    Article  Google Scholar 

  • Amare K, Kabeto K, Gebremichael A (2011) Landslide hazard and risk assessment: a case study from Keyhi-Tekeli village, Tigray, northern Ethiopia. Abstract: Proceedings of the IAG/AIG Regional Conference, Addis Ababa, Ethiopia. 18–22 February 2011

  • Arrouays D, Lagacherie P, Hartemink AE (2017) Digital soil map** across the globe. Geoderma Reg 9:1–4

    Article  Google Scholar 

  • Asfaw EY (2010) Landslide assessment in Blue Nile Gorge, central Ethiopia. Master thesis, Universiteit Gent—Vrije Universiteit Brussel, Belgium

  • Asrat A, Eshete G, Tadesse T, Getaheh W, Fekede K (1996) Land mass movement of November 10, 1994, in Goffa District, Northern Omo zone, Southern Ethiopia. In: Abstracts, Third Ethiopian Geoscience and Mining Engineering Congress, 15–17 November 1996, Addis Ababa, Ethiopia, 18–19

  • Assay G (2008) Geological and geotechnical investigation of Adishu landslide, northern Ethiopia. Thesis, Mekelle University, Ethiopia, MSc

    Google Scholar 

  • Assefa G (1981) Gohatsion formation. A new Lias-Malm lithostratigraphic unit from the Abay river basin. Ethiopia Geos 2:63–88

    Google Scholar 

  • Assefa G (1991) Lithostratigraphy and environment of deposition of the late Jurassic – early Cretaceous sequence of the central part of Northwestern Plateau, Ethiopia. NJb Geol Palaont Abh 182(3):255–284

    Article  Google Scholar 

  • Ayalew L (1999) The effect of seasonal rainfall on landslides in the highlands of Ethiopia. Bull Eng Geol Environ 58:9–19

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2004) Slope failure in the Blue Nile basin, as seen from landscape evolution perspective. Geomorphology 57:95–116

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility map** in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Ayalew L, Vernier A (1999) Causes and mechanisms of slope instability in Dessie town, Ethiopia. In: Yagi, N., Yamagami, T., Jang, J.-C. (Eds.), Slope stability engineering. A.A. Balkema, Rotterdam/Brookfield, 1181–1186

  • Ayalew L, Yamagishi H (2002) Landsliding and landscape development; the case in northern Ethiopia. In: Proceedings of the International Congress “Intrapraevent 2002”, Matsumoto, Japan, 595–606

  • Ayalew L (2000) Factors affecting slope stability in the Blue Nile basin. In: Bromhead, M., Dixon, N., Ibsen, M. (Eds.), Landslides: in research, theory, and practice. Thomas Telford, Cardiff, Wales, 101–106

  • Ayele S (2009) Slope instability and hazard zonation map** using remote sensing and GIS technique in Abay Gorge (Gohatsion Dejen), Central Ethiopia. Unpublished MSc Thesis, Addis Ababa University, Addis Ababa, Ethiopia

  • Ayenew T (2001) Numerical groundwater flow modeling of the central main Ethiopian rift basin. SINET: Ethiopian J Sci 24(2):167–184

    Google Scholar 

  • Ayenew T (2003) Environmental isotope-based integrated hydrogeological study of some Ethiopian rift lakes. J Radioanal Nucl Chem 257(1):11–16

    Article  CAS  Google Scholar 

  • Ayenew T, Barbieri G (2005) Inventory of landslides and susceptibility map** in the Dessie area, northern Ethiopia. 77:1–15. https://doi.org/10.1016/j.enggeo.2004.07.002

  • Ayenew T (2002) Integrated study of landslide processes in Dessie area, northern Ethiopia. Abstract. International Symposium of the International Association of Geomorphologists, December 9–10, Addis Ababa, Ethiopia

  • Bălteanu D, Chendeş V, Sima M, Enciu P (2010) A country level spatial assessment of landslide susceptibility in Romania, Geomorphology XXX, Elsevier. https://doi.org/10.1016/j.geomorph.2010.03.005

  • Barnard PL, Owen LA, Sharma MC, Finkel RC (2001) Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40:21–35

    Article  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis. US Geological Survey Open-File Report 02–24. US Department of the Interior, US Geological Survey, p 38

    Google Scholar 

  • Berhanu D (1994) The soils of Ethiopia: annotated bibliography, Regional Soil Conservation Unit 623 (RSCU), Swedish International Development Authority (SIDA), Tech. handbook no. 9

  • Boer M, Del Barrio G, Puigdefabregas J (1996) Map** soil depth classes in dry Mediterranean areas using terrain attributes derived from a digital elevation model. Geoderma 72:99–118. https://doi.org/10.1016/0016-7061(96)00024-9

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard map**. Proceedings 4th International Symposium on Landslides, Toronto, 1:307–324

  • Braun J, Heimsath AM, Chappell J (2001) Sediment transport mechanisms on soil-mantled hillslopes. Geology 29(8):683–686

    Article  Google Scholar 

  • British Geological Survey (2007) Final Report for the Geological Survey & Investment Promotion Study (Ethiopia World Bank Energy Access Project)

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler. Ser A Phys Geogr 62(1–2):23–27

    Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in map** landslide hazard, geographical information systems in assessing natural hazards (A. Carrara and F. Guzzetti, editors, Kluwer Academin Publishers, Dordrecht, The Netherlands, 135–175

  • Casagli N, Catani F, Puglisi C, Delmonaco G, Ermini L, Margottini C (2004) An inventory-based approach to landslide susceptibility assessment and its application to the Virginio River Basin. Italy Environ Eng Geosci 3:203–216

    Article  Google Scholar 

  • Cascini L, Cuomo S, Guida D (2008) Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng Geol 96:107–125

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbin G (2010) Modelling of rainfall-induced shallow landslides of the flow-type. J Geotech Geoenviron Eng 136(1):85–98

    Article  Google Scholar 

  • Chowdhury R, Flentje P, Bhattacharya G (2009) Geotechnical slope analysis. Taylor & Francis Group, London, UK

  • Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation, geographical information systems in assessing natural hazards (A. Carrara and F. Guzzetti, editors, Kluwer Academin Publishers, Dordrecht, The Netherlands, 107–133

  • Chung CF, Fabbri AG (1999) Probabilistic prediction model for landslide hazard map**. Photogramm Eng Remote Sens 65(12):1999

    Google Scholar 

  • Crozier MJ (1981) Landslides in the urban environment. In: Geomechanics in urban planning: proceedings of a symposium held in Palmerston North, New Zealand, April 29-May 1st 1981. Wellington, N.Z. Institution of Professional Engineers New Zealand, 1981: 231–239

  • De Vita P, Nappi M (2013) Regional distribution of ash-fall pyroclastic soils for landslide susceptibility assessment. In Landslide science and practice pp. 103–109. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_15

  • Donahue RL (1962) Ethiopia: taxonomy, cartography and ecology of soils, Michigan State Univ., African Stud. Center and Inst.Int.Agric., Comm., Ethiopian Stud., Occasional Papers Series, Monograph 1

  • Elias E (2016) Soils of the Ethiopian Highlands: geomorphology and properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649

  • Erkossa T, Laekemariam F, Abera W, Tamene L (2022) Evolution of soil fertility research and development in Ethiopia: from reconnaissance to data-mining approaches. Exp Agric 58:E4. https://doi.org/10.1017/S0014479721000235

    Article  Google Scholar 

  • FAO (1984) Assistance to land use-planning, Ethiopia: provisional soil association map of Ethiopia, Field document No. 6, The United Nations Development Programme and Food and Agriculture Organization, FAO, Rome

  • FAO (1986) Ethiopian highland reclamation study. Final Report of Food and Agricultural Organization, Rome

  • Fourie AB, Rowe D, Blight GE (1999) The effect of infiltration on the stability of the slopes of a dry ash dump. Géotechnique 49(1):1–13

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York, NY

    Book  Google Scholar 

  • Fredlund DG, Rahardjo H, Fredlund MD (2012) Unsaturated soil mechanics in engineering practice. Wiley, New York

    Book  Google Scholar 

  • Gashaw HF, Melese DT, Woldesenbet TT (2022) Landslide susceptibility assessment using GIS on rock-soil slope along Zabidar mountain road corridors, Ethiopia. Geopersia 12(2):201–222. https://doi.org/10.22059/geope.2022.337838.648645

  • Gezahegn A (1998) Slope instability assessment in the Blue Nile Gorge, Ethiopia. In: Moore, D. & Hungr, O. (Eds.), Proceedings of the 8th International IAEG Congress, Vancouver, Balkema, Rotterdam, 1437–1442

  • Gidday BG, Ayothiraman R, Janaki Ramaiah R (2023) Ramana GV (2023) Physical and numerical modeling of rainfall triggered shallow landslides in central highlands, Ethiopia. Bull Eng Geol Env 82:239. https://doi.org/10.1007/s10064-023-03235-y

    Article  Google Scholar 

  • Girma F, Raghuvanshi TK, Ayenew T, Hailemariam T (2015) Landslide hazard zonation in Ada Berga District, Central Ethiopia – a GIS-based statistical approach. J Geomatics 90:25–38 ((i))

    Google Scholar 

  • Glade T (2003) Landslide occurrence as a response to land-use change: a review of evidence from New Zealand. CATENA 51(3–4):297–314

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31(1–4):181–216

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows. Landslides 5:3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Haigh MJ, Rawat JS, Bartarya SK (1988) Environmental correlations of landslide frequency along new highways in the Himalaya: preliminary results. CATENA 15:539–553

    Article  Google Scholar 

  • HaileFekadu G, Tsige MD, Weldesenbet TT (2022) Landslide susceptibility assessment using GIS on rock-soil slope along Zabidar mountain road corridors, Ethiopia. Geopersia 12(2):201–222. https://doi.org/10.22059/GEOPE.2022.337838.648645

  • Hamza T, Raghuvanshi TK (2017) GIS based landslide hazard evaluation and zonation–a case from Jeldu 355 District, Central Ethiopia. J King Saud University-Sci 29(2):151-165.356. https://doi.org/10.1016/j.jksus.2016.05.002

    Article  Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brundsen D, Prior DB (eds) Slope instability. John Wiley, New York, pp 523–602

    Google Scholar 

  • Huat BBK, Ali FH, Low TH (2006) Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotech Geol Eng 24:1293–1306

    Article  Google Scholar 

  • Iticha B, Chalsissa T (2019) Digital soil map** for site-specific management of soils, Geoderma, 351 (85–91). Geoderma. https://doi.org/10.1016/j.geoderma.2019.05.026

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A et al (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) Landslide susceptibility zonation map** a review. J South Asia Disaster Stud 2:81–105

    Google Scholar 

  • Kanungo DP, Sarkar S, Sharma S (2011) Combining neural network with fuzzy, certainty factor south-facing, and likelihood ratio concepts for spatial prediction of landslides. Nat Hazards 59(3):1491–1512

    Article  Google Scholar 

  • Kazmin V (1973) Geological map of Ethiopia, scale 1:2,000,000. Geological Survey of Ethiopia, Addis Ababa

  • Kitamura R, Sako K (2010) Contribution of “Soils and Foundations” to studies on rainfall-induced slope failure. Soils Found 50(6):955–964

    Article  Google Scholar 

  • Knapen A, Kitutu MG, Poesen J, Breugelmans W, Deckers J, Muwanga A (2006) Landslides in a densely populated county at the foot slopes of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73:149–165

    Article  Google Scholar 

  • Lateltin O, Haemmig C, Raetzo H, Bonnard C (2005) Landslide risk management in Switzerland. Landslides 2:313–320

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korean. Environ Geol 40:1095–1113. https://doi.org/10.1007/s002540100310

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990

    Article  CAS  Google Scholar 

  • Li L, Lan H, Guo C, Zhang Y, Li Q, Wu Y (2017) A modified frequency ratio method for landslide susceptibility assessment. Landslides 14(2):727–741

    Article  Google Scholar 

  • Liu M, Chen X, Yang S (2014) Collapse landslide and mudslide hazard zonation. Landslide science for a safer geoenvironmental. Springer International Publishing, Switzerland, pp 457–462

    Chapter  Google Scholar 

  • Liu Z, Gilbert G, Cepeda JM, Lysdahl AOK, Piciullo L, Hefre H, Lacasse S (2021) Modeling of shallow landslides with machine learning algorithms. Geosci Front 12(1):385–393. https://doi.org/10.1016/j.gsf.2020.04.014

    Article  CAS  Google Scholar 

  • Loche M, Alvioli M, Marchesini I, Bakka H, Lombardo L (2022) Landslide susceptibility maps of Italy: lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. In Earth-Science Reviews (Vol. 232). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2022.104125

  • Lombardo L, Tanyas H (2021) From scenario-based seismic hazard to scenario-based landslide hazard: fast–forwarding to the future via statistical simulations. Stoch Env Res Risk A, pp 1–14

  • Lombardo L, Mai PM (2018) Presenting logistic regression–based landslide susceptibility results. Eng Geol 244:14–24

    Article  Google Scholar 

  • Lu N, Godt JW (2013) Hillslope Hydrology and Stability. Cambridge University Press, Cambridge, UK, pp 1–458

    Book  Google Scholar 

  • Mark RK, Ellen SD (1995) Statistical and simulation models for map** debris-flows hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 93–106

  • McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil map**. Geoderma 117(1–2):3–52

    Article  Google Scholar 

  • Mersha T, Meten M (2020) GIS-based landslide susceptibility map** and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenviron Disasters 7(1):20

    Article  Google Scholar 

  • Mesfin A (1998) Nature and management of Ethiopian soils. ILR I:272

    Google Scholar 

  • Meten M, Prakash Bhandary N, Yatabe R (2015) Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenviron Disasters 2:9

    Article  Google Scholar 

  • Minasny B, McBratney AB (2016) Digital soil map**: a brief history and some lessons. Geoderma 264:301–311

    Article  Google Scholar 

  • Moeyersons J, Van Den Eeckhaut M, Nyssen J et al (2008) Mass movement map** for geomorphological understanding and sustainable development. Tigray, Ethiopia, Catena 75:45–54

  • Mohr PA (1983) Ethiopian flood basalt province. Nature 303:577–583

    Article  CAS  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Montrasio L, Valentino R (2008) A model for triggering mechanisms of shallow landslides. Nat Hazards Earth Syst Sci 8:1149–1159

    Article  Google Scholar 

  • Montrasio L, Valentino R, Terrone A (2014) Application of the SLIP model. Procedia Earth Planetary Sci 9(2014):206–213. https://doi.org/10.1016/j.proeps.2014.06.023

    Article  Google Scholar 

  • Montrasio L (2000) Stability analysis of soil slip. In: Brebbia CA, editor. Proc. of Int. Conf. Risk 2000. Southampton: Wit Press; 357–366

  • Mudd SM, Furbish DJ (2004) Influence of chemical denudation on hillslope morphology. J Geophys Res 109:F02001. https://doi.org/10.1029/2003JF000087

    Article  Google Scholar 

  • Mulualem A, Gobezie TB, Kasahun B, Demese M (2018) Recent developments in soil fertility map** and fertilizer advisory services in Ethiopia, a position paper, https://www.researchgate.net/ publication/ 327764748/

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3–4):171–191

    Article  Google Scholar 

  • Nicolet P, Foresti L, Caspar O, Jaboyedoff M (2013) Shallow landslides stochastic risk modeling based on the precipitation event of August 2005 in Switzerland: results and implications. Nat Hazards Earth Syst Sci 13:3169–3184

    Article  Google Scholar 

  • Novak V, Simunek J, van Genuchten MT (2000) Infiltration of water into soil with cracks. J Irrig Drain Eng-ASCE 126(1):41–47

    Article  Google Scholar 

  • Nyssen J, Moeyersons J, Poesen J, Deckers J, Haile M (2002) The environmental significance of the remobilization of ancient mass movements in the Atbara-Tekeze headwater, Northern Ethiopia. Geomorphology 49:303–322

    Article  Google Scholar 

  • Ohlmacher GC (2007) Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng Geol 91:117–134

    Article  Google Scholar 

  • Okimura T, Ichikawa R (1985) A prediction method for surface failures by movements of infiltrated water in a surface soil layer. Nat Disaster Sci 7:41–51

    Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard map** based on geological attributes. Eng Geol 32:81–100

    Article  Google Scholar 

  • Papathoma-Koehle M, Glade T (2013) The role of vegetation for landslide risk. In: Renaud F, Sudmeier-Rieux K, Estrella M (eds) Ecosystem management for disaster risk reduction. United Nations University, Tokyo, pp 293–320

    Google Scholar 

  • Pardeshi SD, Autade SE, Pardeshi SS (2013) Landslide hazard assessment: recent trends and techniques. Springerplus 2(1):1–11. https://doi.org/10.1186/2193-1801-2-523

    Article  Google Scholar 

  • Petley DN (2012) Global patterns of loss of life from landslides. Geology 40:927–930

    Article  Google Scholar 

  • Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44. https://doi.org/10.1007/s11069-006-9100-3

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2013) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility map** at Haraz watershed, Iran. Arab J Geosci 6(7):2351–2365

    Article  Google Scholar 

  • Pradel D, Raad G (1993) Effect of permeability on surficial stability of homogeneous slopes. J Geotech Eng 109(1):62–70

    Google Scholar 

  • Rahardjo H, Satyanaga A (2019) Sensing and monitoring for assessment of rainfall-induced slope failures in residual soil. Proc the Inst Civil Eng Geotech Eng 1–45. https://doi.org/10.1680/jgeen.18.00208

  • Regmi NR, Giardino JR, Vitek JD (2010) Assessing susceptibility to landslides: using models to understand observed changes in slopes. Geomorphology 122:25–38

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud B, Mihir M, Guzzetti F (2018) A review of statistically–based landslide susceptibility models. Earth Sci Rev 180:60–91

    Article  Google Scholar 

  • Reid ME, LaHusen RG, Iverson RM (1997) Debris-flow initiation experiments using diverse hydrological triggers. In: Chen CL (ed) Debris-flow hazards mitigation: mechanics, prediction, and assessment. American Society of Civil Engineering, New York, pp 1–10

    Google Scholar 

  • Reid ME, Christian SB, Brien DL, Henderson ST (2015) Scoops3D–Software to analyze 3D slope stability throughout a digital landscape: U.S. Geological Survey Techniques and Methods, book 14, Chap. A1, 218. https://doi.org/10.3133/tm14A1

  • Remondo J, Soto J, Gonzáles-Díez A, Díaz de Terán JR, Cendrero A (2005) Human impact on geomorphic processes and hazards in mountains areas in northern Spain. Geomorphology 66:69–84

    Article  Google Scholar 

  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114(3):129–142

    Article  Google Scholar 

  • Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 94(2008):314–324

    Article  Google Scholar 

  • Russo A, Fantozzi P, Tadesse S (1999) Geological map of Mekelle Outlier (Western Sheet), 1: 100000 scale. Cooperazione Italiana, Roma

  • Saco PM, Willgoose GR, Hancock GR (2006) Spatial organization of soil depths using a landform evolution model. J Geophys Res 111:F02016. https://doi.org/10.1029/2005JF000351

    Article  Google Scholar 

  • SafeLand (2011) Deliverable 1.6: analysis of landslides triggered by anthropogenic factors in Europe, SafeLand European Project living with landslide risk in Europe: assessment, effects of global changes, and risk management strategies. Edited by Nadim, F., Høydal, Ø, Haugland, H. and McLean, A.: 81p

  • Sah MP, Mazari RK (1998) Anthropogenically accelerated mass movement, Kulu Valley, Himachal Pradesh, India. Geomorphology 26:123–138

    Article  Google Scholar 

  • Sarkar D, Saha S, Mondal P (2021) GIS-based frequency ratio and Shannon’s entropy techniques for flood vulnerability assessment in Patna district, Central Bihar, India. Int J Environ Sci Technol 19(9):8911–8932

    Article  Google Scholar 

  • Sarkar S, Kanungo D, Patra A, Kumar P (2006) Disaster mitigation of debris flow, slope failure, and landslides. In: GIS-based landslide susceptibility case study in Indian Himalaya. Universal Acadamy Press, Tokyo, pp 617– 624

  • Saulnier GM, Beven K, Obled C (1997) Including spatially variable effective soil depths in TOPMODEL. J Hydrol 202:158–172. https://doi.org/10.1016/S0022-1694(97)00059-0

    Article  Google Scholar 

  • Schulz WH (2007) Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Eng Geol 89:67–87

    Article  Google Scholar 

  • Selby MJ (1993) Hillslope materials and processes, 2nd edn. Oxford University Press, Oxford, p 430

  • Sidle R, Ochiai H (2006) Landslides: processes, prediction, and land use, American Geophysical Union, Washington, D.C. Water R/ces Monogr;18:312

  • Stanley T, Kirschbaum DB (2017) A heuristic approach to global landslide susceptibility map**. Nat Hazards 87(1):145–164. https://doi.org/10.1007/s11069-017-2757-y

    Article  Google Scholar 

  • Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probabilistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121(5):1337–1350

    Article  Google Scholar 

  • Tamene LD, Amede T, Kihara J, Tibebe D, Schulz S (2017) A review of soil fertility management and crop response to fertilizer application in Ethiopia: towards development of site- and context-specific fertilizer recommendation, CIAT Publication No. 443, International Center for Tropical Agriculture (CIAT), Addis Ababa, Ethiopia, hdl.handle.net/10568/82996

  • Terzaghi K (1950) Mechanism of landslides. In: Paige S (ed) Application of geology to engineering practice (Berkey Volume). Geological Society of America, New York, pp 83–123

    Google Scholar 

  • The federal democratic republic of Ethiopia Ministry of Mines (2008) Geological Survey of Ethiopia (GSE), annual report. Addis Abeba, Ethiopia

  • Tsai CC, Chen ZS, Duh CT, Horng FV (2001) Prediction of soil depth using a soil-landscape regression model: a case study on forest soils in southern Taiwan. Proc Natl Sci Counc Repub China 25(1):34–49

    CAS  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Govers G, Verstraeten G, Demoulin A (2007) Characteristics if the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256:588–603

    Article  Google Scholar 

  • Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. Debris flow hazards and related phenomena, Jakob, M. and Hungr, O. (eds). Springer, Berlin, 325–362

  • Woldearegay K (2013) Review of the occurrences and influencing factors of landslides in the highlands of Ethiopia: with implications for infrastructural development. Momona Ethiopian J Sci 5(1):3–31. https://doi.org/10.4314/mejs.v5i1.85329

    Article  Google Scholar 

  • Woldearegay K (2005) Rainfall-triggered landslides in the northern highlands of Ethiopia: characterization, GIS-based prediction and mitigation. PhD Thesis. Graz University of Technology, Austria

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110

    Article  Google Scholar 

  • Wubalem A (2021) Landslide susceptibility map** using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenviron Disasters 8(1):1–21

    Article  Google Scholar 

  • Zêzere JL, Ferreira AB, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30:133–146

    Article  Google Scholar 

  • Zhang K, Wu X, Niu R, Yang K, Zhao L (2017) The assessment of landslide susceptibility map** using random forest and decision tree methods in the Three Gorges Reservoir area. China Environ Earth Sci 76:405

    Article  Google Scholar 

  • Zhang YX, Lan HX, Li LP, Wu YM, Chen JH, Tian NM (2020) Optimizing the frequency ratio method for landslide susceptibility assessment: a case study of the Caiyuan Basin in the southeast mountainous area of China. J Mt Sci 17(2):340–357

    Article  Google Scholar 

  • Zhuang J, Peng J, Iqbal J, Liu T, Liu N, Li Y, Ma P (2015) Identification of landslide spatial distribution and susceptibility assessment in relation to topography in the **’an Region, Shaanxi Province, China. Front Earth Sci 9(3):449–462. https://doi.org/10.1007/s11707-014-0474-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biruk Gissila Gidday.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gidday, B.G., Gidday, B.G. A comprehensive review and potential guidance on the reliability of landslide evaluation approaches in Central, Northern, and Northwestern Highlands, Ethiopia. Bull Eng Geol Environ 83, 173 (2024). https://doi.org/10.1007/s10064-024-03653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-024-03653-6

Keywords

Navigation