Log in

Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient–derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1–SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CN:

copy number

CV:

coefficient of variation

dPCR:

digital PCR

dsDNA:

double-stranded DNA

ex7:

exon 7

ex8:

exon 8

6FAM:

6-carboxyfluorescein

gDNA:

genomic DNA

in1:

intron 1

LCL:

lymphoblastoid-like cell line

PCR:

polymerase chain reaction

SD:

standard deviation

SMA:

spinal muscular atrophy

SMN:

survival motor neuron

3’-UTR:

3′-untranslated region

VIC:

4,7,2′-trichloro-7′-phenyl-6-carboxyfluorescein

References

  1. Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110

    Article  CAS  PubMed  Google Scholar 

  2. Tisdale S, Pellizzoni L (2015) Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J Neurosci 35:8691–8700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pearn J (1978) Incidence, prevalence and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet 15:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuscó I, Barceló MJ, Soler C, Parra J, Baiget M, Tizzano E (2002) Prenatal diagnosis for risk of spinal muscular atrophy. Br J Obstet Gynaecol 109:1244–1249

    Article  Google Scholar 

  5. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  CAS  PubMed  Google Scholar 

  6. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96:6307–6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AHM, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183

    Article  CAS  PubMed  Google Scholar 

  8. Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9:259–265

    Article  CAS  PubMed  Google Scholar 

  9. Burnett BG, Muñoz E, Tandon A, Kwon DY, Sumner CJ, Fischbeck KH (2009) Regulation of SMN protein stability. Mol Cell Biol 29:1107–1115

    Article  CAS  PubMed  Google Scholar 

  10. Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skip** is a principal contributor to spinal muscular atrophy severity. Genes Dev 24:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butchbach MER (2016) Copy number variations in the Survival Motor Neuron genes: implications for spinal muscular atrophy and other neurodegenerative diseases. Front Mol Biosci 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    Article  CAS  PubMed  Google Scholar 

  13. Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossoll W, Prior TW, Morris GE, Burghes AHM (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339

    Article  CAS  PubMed  Google Scholar 

  14. Michaud M, Arnoux T, Bielli S, Durand E, Rotrou Y, Jablonka S, Robert F, Giraudon-Paoli M, Riessland M, Mattei MG, Andriambeloson E, Wirth B, Sendtner M, Gallego J, Pruss RM, Bordet T (2010) Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol Dis 38:125–135

    Article  PubMed  Google Scholar 

  15. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, Burghes AHM, Kissel JT (2009) A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet 85:408–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bernal S, Alías L, Barceló MJ, Also-Rallo E, Martínez-Hernández R, Gámez J, Guillén-Navarro E, Rosell J, Hernando I, Rodríguez-Alvarez FJ, Borrego S, Millán JM, Hernández-Chico C, Baiget M, Fuentes-Prior P, Tizzano EF (2010) The c.859G>C variant in the SMN2 gene is associated with types II and III SMA and originates from a common ancestor. J Med Genet 47:640–642

    Article  CAS  PubMed  Google Scholar 

  17. Vezain M, Saukkonen AM, Goina E, Touraine R, Manel V, Toutain A, Fehrenbach S, Frébourg T, Pagani F, Tosi M, Martins A (2010) A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy. Hum Mutat 31:E1110–E1125

    Article  PubMed  Google Scholar 

  18. Burghes AHM (1997) When is a deletion not a deletion? When it is converted. Am J Hum Genet 61:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hahnen E, Schönling J, Rudnik-Schöneborn S, Zerres K, Wirth B (1996) Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: new insights into molecular mechanisms responsible for the disease. Am J Hum Genet 59:1057–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Steege G, Grootscholten PM, Cobben JM, Zappata S, Scheffer H, den Dunnen JT, van Ommen GJB, Brahe C, Buys CHCM (1996) Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus at chromosome 5. Am J Hum Genet 59:834–838

    PubMed  PubMed Central  Google Scholar 

  21. Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K (1997) Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet 61:40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. DiDonato CJ, Ingraham SE, Mendell JR, Prior TW, Lenard S, Moxley RT III, Florence J, Burghes AHM (1997) Deletion and conversion in spinal muscular atrophy: is there a relationship to severity? Ann Neurol 41:230–237

    Article  CAS  PubMed  Google Scholar 

  23. Cuscó I, Barceló MJ, del Rio E, Martín Y, Hernández-Chico C, Bussaglia E, Baiget M, Tizzano EF (2001) Characterization of SMN hybrid genes in Spanish SMA patients: de novo, homozygous and compound heterozygous cases. Hum Genet 108:222–229

    Article  PubMed  Google Scholar 

  24. Ogino S, Gao S, Leonard DGB, Paessler M, Wilson RB (2003) Inverse correlation between SMN1 and SMN2 copy numbers: evidence for gene conversion from SMN2 to SMN1. Eur J Hum Genet 11:275–277

    Article  CAS  PubMed  Google Scholar 

  25. Mazzei R, Gambardella A, Conforti FL, Magariello A, Patitucci A, Gabiele AL, Sprovieri T, Labate A, Valentino P, Bono F, Bonavita S, Zappia M, Muglia M, Quattrone A (2004) Gene conversion events in adult-onset spinal muscular atrophy. Acta Neurol Scand 109:151–154

    Article  CAS  PubMed  Google Scholar 

  26. Wang CC, Jong YJ, Chang JG, Chen YL, Wu SM (2010) Universal fluorescent multiplex PCR and capillary electrophoresis for evaluation of gene conversion between SMN1 and SMN2 in spinal muscular atrophy. Anal Bioanal Chem 397:2375–2383

    Article  CAS  PubMed  Google Scholar 

  27. Chen TH, Tzeng CC, Wang CC, Wu SM, Chang JG, Yang SN, Hung CH, Jong YJ (2011) Identification of bidirectional gene conversion between SMN1 and SMN2 by simultaneous analysis of SMN dosage and hybrid genes in a Chinese population. J Neurol Sci 308:83–87

    Article  CAS  PubMed  Google Scholar 

  28. Kubo Y, Nishio H, Saito K (2015) A new method for SMN1 and hybrid SMN gene analysis in spinal muscular atrophy using long-range PCR followed by sequencing. J Hum Genet 60:233–239

    Article  CAS  PubMed  Google Scholar 

  29. Qu YJ, Bai JL, Cao YY, Wang H, ** YW, Du J, Ge XS, Zhang WH, Li Y, He SX, Song F (2016) Mutation spectrum of the survival of motor neuron 1 and functional analysis of variants in Chinese spinal muscular atrophy. J Mol Diagn 18:741–752

    Article  CAS  PubMed  Google Scholar 

  30. Alías L, Bernal S, Calucho M, Martínez E, March F, Gallano P, Fuentes-Prior P, Abuli A, Serra-Juhe C, Tizzano EF (2018) Utility of two SMN1 variants to improve spinal muscular atrophy carrier diagnosis and genetic counselling. Eur J Hum Genet 26:1554–1557

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sumner CJ, Crawford TO (2018) Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J Clin Invest 128:3219–3227

    Article  PubMed  PubMed Central  Google Scholar 

  32. Glascock J, Sampson J, Haidet-Phillips A, Connolly A, Darras B, Day J, Finkel R, Howell RR, Klinger KW, Kuntz N, Prior T, Shieh PB, Crawford TO, Kerr D, Jarecki J (2018) Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis 5:145–158

    Article  PubMed  PubMed Central  Google Scholar 

  33. Glascock J, Sampson J, Connolly AM, Darras BT, Day JW, Finkel R, Howell RR, Klinger KW, Kuntz N, Prior T, Shieh PB, Crawford TO, Kerr D, Jarecki J (2020) Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J Neuromuscul Dis 7:97–100

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368

    Article  PubMed  Google Scholar 

  35. Anhuf D, Eggermann T, Rudnik-Schöneborn S, Zerres K (2003) Determination of SMN1 and SMN2 copy number using TaqMan technology. Hum Mutat 22:74–78

    Article  CAS  PubMed  Google Scholar 

  36. Gómez-Curet I, Robinson KG, Funanage VL, Crawford TO, Scavina M, Wang W (2007) Robust quantification of the SMN gene copy number by real-time TaqMan PCR. Neurogenetics 8:271–278

    Article  PubMed  Google Scholar 

  37. Arkblad EL, Darin N, Berg K, Kimber E, Brandberg G, Lindberg C, Holmberg E, Tulinius M, Nordling M (2006) Multiplex ligation-dependent probe amplification improves diagnostics in spinal muscular atrophy. Neuromuscul Disord 16:830–838

    Article  PubMed  Google Scholar 

  38. Huang CH, Chang YY, Chen CH, Kuo YS, Hwu WL, Gerdes T, Ko TM (2007) Copy number analysis of survival motor neuron genes by multiplex ligation-dependent probe amplification. Genet Med 9:241–248

    Article  PubMed  Google Scholar 

  39. Vijzelaar R, Senetsalaar R, Clausen M, Mason AG, Rinsma M, Zegers M, Molleman N, Boschloo R, Yilmaz R, Kuilboer R, Lens S, Sulchan S, Schouten J (2019) The frequency of SMN gene variants lacking exon 7 and 8 is highly population dependent. PLoS One 14:e0220211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW (2011) Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11:2167–2174

    Article  CAS  PubMed  Google Scholar 

  41. Stabley DL, Harris AW, Holbrook J, Chubbs NJ, Lozo KW, Crawford TO, Swoboda KJ, Funanage VL, Wang W, Mackenzie W, Scavina M, Sol-Church K, Butchbach MER (2015)SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR. Mol Genet Genomic Med 3:248–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vidal-Folch N, Gavrilov D, Raymond K, Rinaldo P, Tortorelli S, Matern D, Oglesbee D (2018) Multiplex droplet digital PCR method applicable to newborn screening, carrier status and assessment of spinal muscular atrophy. Clin Chem 64:1753–1761

    Article  CAS  PubMed  Google Scholar 

  43. Jiang L, Lin R, Gallagher S, Zayac A, Butchbach MER, Hung P (2020) Development and validation of a 4-color multiplexing spinal muscular atrophy (SMA) genoty** assay on a novel integrated digital PCR instrument. Sci Rep 10:19892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park S, Lee H, Shin S, Lee ST, Lee KA, Choi JR (2020) Analytical validation of the droplet digital PCR assay for the diagnosis of spinal muscular atrophy. Clin Chim Acta 510:787–789

    Article  CAS  PubMed  Google Scholar 

  45. Stabley DL, Holbrook J, Harris AW, Swoboda KJ, Crawford TO, Sol-Church K, Butchbach MER (2017) Establishing a reference dataset for the authentication of spinal muscular atrophy cell lines using STR profiling and digital PCR. Neuromuscul Disord 27:439–446

    Article  PubMed  PubMed Central  Google Scholar 

  46. Baer M, Nilsen TW, Costigan C, Altman S (1990) Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res 18:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Steege G, Grootscholten PM, van der Vlies P, Draaijers TG, Osinga J, Cobben JM, Scheffer H, Buys CHCM (1995) PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet 345:985–986

    Article  CAS  PubMed  Google Scholar 

  48. Ruhno C, McGovern VL, Avenarius MR, Snyder PJ, Prior TW, Nery FC, Muhtaseb A, Roggenbuck JS, Kissel JT, Sansone VA, Siranosian JJ, Johnstone AJ, Nwe PH, Zhang RZ, Swoboda KJ, Burghes AHM (2019) Complete sequencing of the SMN2 gene in SMA patients detect SMN gene deletion junctions and variants in SMN that modify the SMA phenotype. Hum Genet 138:241–256

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen X, Sanchis-Juan A, French CE, Connell AJ, Delon I, Kingsbury Z, Chawla A, Halpern AL, Taft RJ, BioResource NIHR, Bentley DR, Butchbach MER, Raymond FL, Eberle MA (2020) Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet Med 22:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW (2017) A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet 26:2768–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kashima T, Rao N, Manley JL (2007) An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci U S A 104:3426–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gambardella A, Mazzei R, Toscano A, Annesi G, Pasqua A, Annesi F, Quattrone F, Oliveri RL, Valentino P, Bono F, Aguglia U, Zappia M, Vita G, Quattrone A (1998) Spinal muscular atrophy due to an isolated deletion of exon 8 of the telomeric survival motor neuron gene. Ann Neurol 44:836–839

    Article  CAS  PubMed  Google Scholar 

  53. Thauvin-Robinet C, Drunat S, Saugier Veber P, Cantereau D, Cossée M, Cassini C, Soichot P, Masurel-Paulet A, De Monléon JV, Sagot P, Huet F, Antin M, Calmels N, Faivre L, Gérard B, moléculaire le réseau français de génétique (2012) Homozygous SMN1 exons 1-6 deletion: pitfalls in genetic counseling and general recommendations for spinal muscular atrophy molecular diagnosis. Am J Med Genet 158A:1735–1741

  54. Alías L, Bernal S, Barceló MJ, Also-Rallo E, Martínez-Hernández R, Rodríguez-Alvarez FJ, Hernández-Chico C, Baiget M, Tizzano EF (2011) Accuracy of marker analysis, quantitative real-time polymerase chain reaction and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy. Genet Test Mol Biomarkers 15:587–594

    Article  PubMed  Google Scholar 

  55. Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schöneborn S, Wienker T, Zerres K (1999) Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation and implications for genetic counseling. Am J Hum Genet 64:1340–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jedličková I, Přistoupilová A, Nosková L, Majer F, Stránecký V, Hartmannová H, Hodaňová K, Trešlová H, Hýblová M, Solár P, Minárik G, Giertlová M, Kmoch S (2020) Spinal muscular atrophy caused by a novel Alu-mediated deletion of exons 2a-5 in SMN1 undetectable with routine genetic testing. Mol Genet Genomic Med 8:e1238

    Article  PubMed  PubMed Central  Google Scholar 

  57. Workman E, Veith A, Battle DJ (2014) U1A regulates 3′ processing of the survival motor neuron mRNA. J Biol Chem 289:3703–3712

    Article  CAS  PubMed  Google Scholar 

  58. Workman E, Kalda C, Patel A, Battle DJ (2015) Gemin5 binds to the survival motor neuron mRNA to regulate SMN expression. J Biol Chem 290:15662–15669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Farooq F, Balabanian S, Liu X, Holcik M, MacKenzie A (2009) p38 mitogen-activated protein kinase stabilizes SMN mRNA through RNA binding protein HuR. Hum Mol Genet 18:4035–4045

    Article  CAS  PubMed  Google Scholar 

  60. Butchbach MER (2016) Applicability of digital PCR to the investigation of pediatric-onset genetic disorders. Biomol Detect Quantific 10:9–14

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by funding from the National Institute of General Medical Sciences of the National Institutes of Health (Institutional Development Award (IDeA) Networks of Biomedical Research Excellence; P20GM103446 to M.E.R.B. and K.M.R. and Centers of Biomedical Research Excellence; P20GM103464 to M.E.R.B.) and the Nemours Foundation (M.E.R.B. and K.M.R.). Some of the fibroblast lines used in this study were obtained from the Intellectual and Developmental Disabilities Research Center at the Kennedy Krieger Institute, Baltimore, MD which is supported by the NICHD grant 1U54HD079123-01A1.

Author information

Authors and Affiliations

Authors

Contributions

D.L.S., K.M.R., and M.E.R.B. conceived and designed the experiments; D.L.S. and J.H. performed the experiments; D.L.S. and M.E.R.B. analyzed data; T.O.C., M.S., and K.J.S. provided key reagents; D.L.S. and M.E.R.B. wrote the first draft of the manuscript; D.L.S., J.H., M.S., T.O.C., K.J.S., K.M.R., and M.E.R.B. edited the manuscript.

Corresponding author

Correspondence to Matthew E. R. Butchbach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or research committees (Nemours Institutional Review Board, #764456) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stabley, D.L., Holbrook, J., Scavina, M. et al. Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 22, 53–64 (2021). https://doi.org/10.1007/s10048-020-00630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-020-00630-5

Keywords

Navigation