Log in

Percutaneous intravascular micro-axial blood pump: current state and perspective from engineering view

  • Review
  • Artificial Heart (Basic)
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The utilization of a minimally invasively placed catheter-mounted intravascular micro-axial flow blood pump (IMFBP) is increasing in the population with advanced heart failure. The current development of IMFBPs dates back around the 1990s, namely the Hemopump with a wire-drive system and the Valvopump with a direct-drive system. The wire-drive IMFBPs can use a brushless motor in an external console unit to transmit rotational force through the drive wire rotating the impeller inside the body. The direct-drive IMFBPs require an ultra-miniature and high-power brushless motor. Additionally, the direct-drive system necessitates a mechanism to protect against blood immersion into the motor. Therefore, the direct-drive IMFBPs can be categorized into two types of devices: those with seal mechanisms or those with sealless mechanisms using magnetically coupling. The IMFBPs can be classified into two groups depending on their purpose. One group is for cardiogenic shock following a heart attack or for use in high-risk percutaneous coronary intervention (PCI), and the other group serves the purpose of acute decompensated heart failure. Both direct-drive IMFBPs and wire-drive IMFBPs have their own advantages and disadvantages, and efforts are being made to develop and improve, and clinically implement them, leveraging their own strengths. In addition, there is a possibility that innovative new devices may be invented. For researchers in the field of artificial heart development, IMFBPs offer a new area of research and development, providing a novel treatment option for severe heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weber DM, Raess DH, Henrques JPS, Siess T. Principles of Imella cardiac support. Card Interv Today. 2009;3:6.

    Google Scholar 

  2. Ramzy D, Soltesz E, Anderson M. New surgical circulatory support system outcomes. ASAIO J. 2020;66:746–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devise-current state and perspectives. J Thorac Dis. 2016;8:E660-666.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosenblum H, Kapur NK, Abraham WT, Udelson J, Itkin M, Uriel N, Voors AA, Burkhoff D. Conceptual considerations for device-based therapy in acute decompensated heart failure DRI2P2S. Cir Heart Fail. 2020;13:1–15.

    Google Scholar 

  5. Merhige ME, Smalling RW, Cassidy D, Barrett R, Short J, Wampler RK. Effect of the hemopump left ventricular assist device on regional myocardial perfusion and function. Criculation. 1989;80:158–66.

    Google Scholar 

  6. Butler KC, Moise CJ, Wampler RK. The Hemopump®-a new cardiac prothesis device. IEEE Trans BME. 1990;37:193–6.

    Article  CAS  Google Scholar 

  7. Yamazaki K, Okamoto E, Yamamoto K, Mitamura Y, Tanaka T, Yozu R. The valvopump, an axial blood pump implanted at the heart valve position: concept and initial results. Artif Org. 1992;16:297–9.

    Article  CAS  Google Scholar 

  8. Mitamura Y, Fujiyoshi M, Yoshida T, Yozu R, Okamoto E, Tanaka T, Kawada S. A ferrofluidic seal specially designed for rotary blood pumps. Artif Org. 1996;20:497–502.

    Article  CAS  Google Scholar 

  9. Okamoto E, Yano T, Sekine K, Inoue Y, Shiraishi Y, Yambe T, Mitamura Y. Development and initial performance of a miniature axial flow blood pump using magnetic fluid shaft seal. J Artif Org. 2023;23:12–6.

    Article  Google Scholar 

  10. Van Mieghem NM, Daemen J, den Uil C, Dur O, Joziasse L, Maugenest AM, Fitzgerald K, Parker C, Muller P, van Geuns R-J. Design and principle of the HeartMate PHP (percutaneous heart pump). Euro Interv. 2018;13:1662–6.

    Google Scholar 

  11. Introducing heartmate phpTM 2023 https://sante.ro/wp-content/uploads/2016/04/PHP-Brochure_English_2015.pdf Accessed 5 July 2023

  12. Thoratec Announces the First Human Use of HeartMate PHP 2023 https://www.dicardiology.com/article/thoratec-announces-first-human-use-heartmate-php Accessed 5 July 2023

  13. Kapur NK, Jorde UP, Sharma S, Pyo RT, Rajagopal V, Lotun K, Kimmelstiel C, Kuo HC, Zhang Z, Ying SW, West NEJ, Kandzari DE. Early experience with the HeartMate percutaneous heart pump from the shield ii trial. ASAIO J. 2022;68:492–8.

    Article  PubMed  Google Scholar 

  14. ClinicalTrials.gov. SHIELD II Clinical Investigation (SHIELD II). ClinicalTrials.gov Identifier: NCT02468778 2023 https://clinicaltrials.gov/ct2/show/NCT02468778?term=HeartMate+PHP&draw=2&rank=3 Accessed 5 July 2023

  15. RetainÖhlinPeterzénGranfeldtSteenEmanuelsson ÖHBHSH. Initial tests with a new cardiac assist device: ASAIO J. 1999;45:317–21.

    Article  Google Scholar 

  16. RetainSteenÖhlin ÖSH. Hemodynamic effects of a new percutaneous circulatory support device in a left ventricular failure modelm. ASAIO J. 2003;49:731–6.

    Article  Google Scholar 

  17. Cardiobridge Inc.2023 https://www.cardiobridge.com/ Accessed 5 July 2023

  18. SmithRetainKeebleDixonRothman EJÖTKMT. A first-in-man study of the retain catheter pump for circulatory support fin patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv. 2009;73:859–65.

    Article  Google Scholar 

  19. Keeble TR, Karamasis GV, Rothman MT, Ricksten SE, Ferrari M, Hullin R, Schersén F, Retain Ö, Kirking ST, Cleland JGF, Smith EJ. Percutaneous haemodynamic and renal support in patients presenting with decompensated heart failure: a multi-centre efficacy study using the Reitan Catheter Pump(RCP). Int J Cardio. 2019;275:53–8.

    Article  Google Scholar 

  20. Napp LC, Mariani S, Ruhparwasr A, Schmack B, Keeble T, Retain Ö, Hanke JS, Dogan G, Hiss M, Bauersachs J, Haverich A, Schmitto JD. Fisrt-in-man use of the percutaneous 10F reitan catheter pump for cardiorenal syndrome. ASAIO J. 2022;68:e99-101.

    Article  PubMed  Google Scholar 

  21. Second heart assist HP 2023 https://secondheartinc.com/ Accessed 5 July 2023

  22. Miller LW, Ebner A, Leonhardt H, Richardson MJ. First in human experience with the second heart assist device. ASAIO J. 2020;66:29.

    Google Scholar 

  23. Kapur N, Hernandez-Montfort J, Kanwar MK. A new dawn for ventricular unloading as a bridge to heart transplantation. ASAIO J. 2022;68:760–2.

    Article  PubMed  Google Scholar 

  24. Use of the Impella BTR™ in Patients With Heart Failure: An Early Feasibility Study (BTR EFS) 2023 https://clinicaltrials.gov/ct2/show/NCT05291884 Accessed 5 July 2023

  25. Magenda Medical Inc.2023 https://magentamed.com/ Accessed 5 July 2023

  26. Flores JJ, Valdovinos J. Development of a catheter-deliverable implantable intravascular blood pump speed controller. ASAIO J. 2022;68 supplement 2:46.

    Article  Google Scholar 

  27. Shabari FR, George J, Cuchiara MP, Langsner RJ, Heuring JJ, Cohn WE, Hertzog BA, Delgado R. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a pocine model of acute left ventricular dysfunction. ASAIO J. 2013;59:240–5.

    Article  PubMed  Google Scholar 

  28. Annamalai SK, Esposito ML, Reyelt LA, Natov P, Jorde LE, Karas RH, Kapur NK. Abdominal positioning of the next generation intra-aortic fluid entrainment pump(Aortix) improves cardiac output in a swine model of heart failure. Circ Heart Fail. 2018;11:e005115.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vora AN, Jones WS, DeVore AD, Ebner A, Clifton W, Patel MR. First-in-human experience with aortix intraaortic pump. Catheter interv. 2019;93:428–33.

    Article  Google Scholar 

  30. Circulatory Support without surgery for heart failure patients 2023 https://www.maxongroup.us/medias/sys_master/8817008312350.pdf?attachment=true Accessed 25 July 2023

  31. Lu C, Krisher J, Benavides O, Palmer A, Edidin A, Durst C, Heuring J. Long-term safety and durability of novel intra-aortic percutaneous mechanical circulatory support device. JHLT. 2022;41:1712–5.

    Google Scholar 

  32. Cowger JA. Safety and performance of the Aortix™ device in patients with decompensated heart failure and cardiorenal syndrome. Boston: Presented at Technology and Heart Failure Therapeutics conference; 2023.

    Google Scholar 

  33. Puzzle Medical Devices Inc. 2023 https://www.puzzlemed.com/ Accessed 5 July 2023

  34. GeorgesTrudeauMartineauRochonPotvinEbnerGénéreux GFJDMJAP. First-in-human experience with the ModulHeart device for mechanical circulatory support and renal perfusion. J SCAI. 2022;1:100449.

    Google Scholar 

  35. Georges G, Trudeau F, Potvin J, Potus F, Martineau S, Généreux P. Preservation of von willebrand factor activity with the modulheart device. J Am Coll Cardio Basic Trans Sci. 2023;04:1–10.

    Google Scholar 

  36. Siess T, Nix C, Menzler F. From a lab type to a product: a retrospective view on Impella’s assist technology. Artif Organs. 2001;25:414–21.

    Article  CAS  PubMed  Google Scholar 

  37. Abiomed Impella RP. 2023 https://www.abiomed.com/products-and-services/impella/impella-rp-with-smartassist Accessed 7 December 2023

  38. Pieri M, Pappalardo F. Impella RP in the treatment of right ventricular failure: what we know and where we go. J Cardiothorac Vasc Anesth. 2018;32:2339–43.

    Article  PubMed  Google Scholar 

  39. Han JJ. Impella RP Flex with SmartAssist receives FDA pre-market approval. Artif Organs. 2023;47:10–1.

    Article  PubMed  Google Scholar 

  40. Janeczek C, Gföhler M, Harasek M, Mohl W 2018Evaluation of hemolysis caused by a miniature heart catheter pump. In 2018 11th Biomedical Engineering International conference BMEiCON 1–5. IEEE

  41. ZakyNordanKapurVestDenorrioChenCouperKawabori MTNKARDFYGSM. Impella 5.5 suport beyond 50 days as bridge to heart transprant in end-stage heart failure patients. ASAIO J. 2023;69:159–62.

    Google Scholar 

  42. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possingger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D. Clinical experiences with magnetic drug targeting: a phase 1 study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996;56:4686–93.

    PubMed  Google Scholar 

  43. Prince PM, Mahmoud WE, Al-Ghamdi A, Bronstein LM. Magnetic drug delivery: where the field is going. Front Chem. 2018;6:619.

    Article  Google Scholar 

  44. Xue Y, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of magnetic particle imaging in biomedicine : advancements and prospects. Front Phys. 2022;13:898426.

    Article  Google Scholar 

  45. Sekine K, Mitamura Y. Evaluation of the cytotoxicity of oil-based magnetic fluid based on cell proliferation study. J Chin Soc Mech Eng. 2020;41:647–52.

    Google Scholar 

  46. Mitamura Y, Sekine K, Okamoto E. Magnetic fluid seals working in liquid environments: factor limiting their life and solution methods. J Magn Magn Mater. 2020;500:1–5.

    Article  Google Scholar 

  47. Moreal G, Koenig SC, Takkin ME, Shambaugh C, LaRose JA, Slaughter MS. Feasibility testing of the RT cardiac systems percutaneous mechanical circulatory support device. ASAIO J. 2023;69:519–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Okamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, E., Mitamura, Y. Percutaneous intravascular micro-axial blood pump: current state and perspective from engineering view. J Artif Organs (2024). https://doi.org/10.1007/s10047-024-01433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10047-024-01433-3

Keywords

Navigation