Log in

A method for moving objects segmentation based on human vision perception in infrared video

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, a new region growing method to achieve the accurate and complete segmentation of the moving objects is introduced. Firstly, the ideal seeds of every moving object are extracted based on “hole” effect of temporal difference. Secondly, on the basis of the consideration that human vision system is most sensitive to the local contrast between targets and surrounding, we proposed a metric for “good” infrared target segmentation based on human vision perception. And according to this metric, a search method based on fine and rough adjustment is applied to determine the best growing threshold for moving objects. The segmented mask of every moving object is grown from the relevant seeds with the best growing threshold. At last, the segmented masks of all moving objects are merged into a complete segmented mask. Experimental results show that the proposed method is superior and effective on segmentation of infrared moving object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ulusoy and H. Yuruk: IET Image Process. 5 (2011) 36.

    Article  Google Scholar 

  2. W. Fei and S. Zhu: IET Image Process. 4 (2010) 11.

    Article  Google Scholar 

  3. J. H. Shen, S. Q. Liu, and Y. X. Ma: J. Infrared Millimeter Waves 24 (2005) 224.

    Google Scholar 

  4. G. X. Zhu, Y. R. Zeng, and T. X. Zhang: Proc. SPIE 6787 (2007) 1.

    Google Scholar 

  5. C. Du and G. Su: Pattern Recognit. Lett. 26 (2005) 2215.

    Article  Google Scholar 

  6. A. Yilmaz, K. Shafique, and M. Shah: Image Vision Comput. 7 (2003) 623.

    Article  Google Scholar 

  7. Y. Chen, X. Liu, and Q. Huang: Infrared Phys. Technol. 51 (2008) 146.

    Article  ADS  Google Scholar 

  8. P. F. Singer and D. M. Sasaki: Proc. SPIE 4048 (2000) 96.

    Article  ADS  Google Scholar 

  9. A. Bieniek and A. Moga: Pattern Recognition 33 (2000) 907.

    Article  Google Scholar 

  10. B. N. Subudhi, P. K. Nanda, and A. Ghosh: Pattern Recognit. Lett. 32 (2011) 2097.

    Article  Google Scholar 

  11. R. F. Gonzalez and R. E. Woods: Digital Image Processing (Pearson Education, Singapore, 2001).

    Google Scholar 

  12. P. Chiranjeevi and S. Sengupta: J. Electron. Imaging 4 (2008) 043009.

    Google Scholar 

  13. C. Stauffer and W. E. L. Grimson: Proc. Internat. Conf. on Computer Vision and Pattern Recognition, 1999, p. 2246.

    Google Scholar 

  14. V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother: Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition 2 (2005) 407.

    Google Scholar 

  15. A. Criminisi, J. Shotton, A. Blake, and P. H. S. Torr: Proc. IEEE Int. Conf. Computer Vision 1 (2003) 191.

    Article  Google Scholar 

  16. S. Kwak, G. Bae, and H. Byun: J. Opt. Soc. Am. A 27 (2010) 180.

    Article  ADS  Google Scholar 

  17. E. L. Andrade, S. Blunsden, and R. B. Fisher: Proc. IET Int. Conf. Visual Information Eng. 1 (2006) 427.

    Article  Google Scholar 

  18. Á. Utasi and L. Czúni: Opt. Eng. 1 (2010) 017201.

    ADS  Google Scholar 

  19. J. L. Barron, D. J. Fleet, and S. S. Beauchemin: Int. J. Comput. Vis. 12 (1994) 43.

    Article  Google Scholar 

  20. E. H. Land: Sci. Am. 237 (1977) 108.

    Article  Google Scholar 

  21. A. Toet, L. J. van Ruyven, and J. M. Valeton: Opt. Eng. 28 (1989) 287789.

    Article  Google Scholar 

  22. Y. Dou, L. Kong, and L. Wang: Acta Opt. Sin. 29 (2009) 2511 [in Chinese].

    Article  Google Scholar 

  23. D. Malacara: (SPIE Press, Bellingham, WA, 2002).

  24. A. Yilmaz, K. Shafique, and M. Shah: Image Vision Comput. 21 (2003) 623.

    Article  Google Scholar 

  25. Y. Yuan, J. Zhang, B. Chang, H. Xu, and Y. Han: Chin. Opt. Lett. 9 (2011) 011101.

    Article  ADS  Google Scholar 

  26. C. Wang and Z.-F. Ye: Acta Autom. Sin. 33 (2007) 0132.

    Article  Google Scholar 

  27. Z. **e and T. G. Stockham, Jr.: IEEE Trans. Syst. Man Cybern. 19 (1989) 379.

    Article  Google Scholar 

  28. W. K. Pratt: Digital Image Processing (Wiley, New York, 1991) 2nd ed.

    MATH  Google Scholar 

  29. J. W. Davis and V. Sharma: Comput. Vision Image Understanding 106 (2007) 162.

    Article  Google Scholar 

  30. R. C. Gonzalez and R. E. Woods: Digital Image Processing (Publishing House of Electronics Industry, 2002) 2nd ed., p. 66.

    Google Scholar 

  31. M. C. Zhang, J. Chang, B. Sun, B. Li, and Y. L. Lei: J. Electron. Inf. Technol. 35 (2013) 2384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaobo Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, B., Min, C., Zhang, J. et al. A method for moving objects segmentation based on human vision perception in infrared video. OPT REV 21, 27–34 (2014). https://doi.org/10.1007/s10043-014-0005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0005-1

Keywords

Navigation