Log in

Detecting groundwater sources for water supplies using magnetic resonance sounding in arid areas with scarce hydrogeological data: a case study on the Mongolian Plateau

Détection d’aquifères pour l’alimentation en eau par sondages de résonnance magnétique dans des régions arides avec de rares données hydrogéologiques: un cas d’étude sur le plateau mongol

Detección de fuentes de aguas subterráneas para el abastecimiento mediante sondeos de resonancia magnética en zonas áridas con escasos datos hidrogeológicos: estudio de caso sobre la meseta de Mongolia

在水文地质数据匮乏的干旱地区采用核磁共振法探测地下水源:蒙古高原的一个研究案例

Detecção de fontes de água subterrânea para abastecimento de água usando ressonância magnética em áreas áridas com dados hidrogeológicos escassos: um estudo de caso no planalto da Mongólia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In most arid areas, due to scarce hydrogeological data, it is a challenge to locate groundwater sources and to meet water demand for residential, irrigation, and mining uses. In this study, an innovative method is presented, using magnetic resonance sounding (MRS), to detect areas suitable as groundwater sources on the Mongolian Plateau. First, a target investigation area was identified with a small number of MRS surveys of potential areas by determining whether aquifers exist, whether the aquifers have relatively large water contents and relaxation times, and whether there are hydraulic connections among the aquifers. Next, an intensive MRS survey (158 points in total) was conducted in the target investigation area, and eight boreholes were drilled. A comparison of the borehole data and MRS data showed that when the MRS data had a high signal-to-noise ratio, the aquifer depth and transmissivity estimated by MRS were associated with a deviation of only 4.85 m from the measured depth, and an uncertainty in transmissivity of 15.53%, respectively. These values indicated that the proposed method is highly accurate. Finally, a kriging interpolation method was used to construct distribution maps of groundwater levels, aquifer thickness, transmissivity, and water yield, based on the borehole and MRS data. The reliability of the results was assessed from several perspectives. The findings showed that this step-by-step approach is an effective method of groundwater source detection in arid areas with scarce hydrogeological data.

Résumé

Dans la plupart des régions arides, en raison de la rareté des données hydrogéologiques, localiser des aquifères et répondre à la demande en eau pour des usages résidentiels, agricoles (irrigation) et miniers constitue un défi. Dans cette étude, une méthode innovante utilisant les sondages de résonnance magnétique (MRS) est présentée pour détecter des zones aquifères propices sur le plateau mongol. Premièrement, une région de recherche cible a été identifiée avec un petit nombre de reconnaissances MRS réalisées sur des zones potentielles; l’objectif est de déterminer si des aquifères existent, si ces aquifères ont des teneurs en eau et temps de relaxation relativement importants et s’il y a des connexions hydrauliques entre aquifères. Ensuite, une reconnaissance RMP intensive (158 points au total) a été conduite dans la région de recherche cible et huit forages ont été réalisés. Une comparaison des données de forages et des données MRS montre que, lorsque les données MRS ont un fort rapport signal sur bruit, la profondeur de l’aquifère et la transmissivité estimées au moyen de la MRS montrent une déviation de seulement 4.85 m pour la profondeur mesurée et une incertitude sur la transmissivité de 15.53%. Ces valeurs indiquent que la méthode proposée est très précise. Enfin, une méthode d’interpolation par krigeage a été utilisée pour construire des cartes de distribution des niveaux piézométriques, d’épaisseur de l’aquifère, de la transmissivité et du débit, sur la base des données de forage et de MRS. La fiabilité des résultats a été établie selon de nombreuses perspectives. Les résultats montrent que cette approche par étapes est une méthode efficace de détection des aquifères dans les régions arides ne disposant que de rares données hydrogéologiques.

Resumen

En la mayoría de las zonas áridas, debido a la escasez de datos hidrogeológicos, es difícil localizar las fuentes de agua subterránea y satisfacer la demanda de agua para usos residenciales, de riego y mineros. En este estudio, se presenta un método innovador, utilizando sondeos por resonancia magnética (MRS), para detectar áreas adecuadas como fuentes de agua subterránea en la meseta mongola. En primer lugar, se identificó un área de investigación objetivo con un pequeño número de estudios de MRS de áreas potenciales determinando si existen acuíferos, si los acuíferos tienen contenidos de agua y tiempos de recuperación relativamente grandes, y si existen conexiones hidráulicas entre los acuíferos. Luego, se llevó a cabo un estudio intensivo de MRS (158 puntos en total) en el área de investigación del objetivo, y se perforaron ocho pozos de sondeo. Una comparación de los datos de la perforación y de la MRS mostró que cuando los datos de la MRS tenían una alta relación señal/ruido, la profundidad y transmisividad del acuífero estimada por la MRS estaban asociadas con una desviación de sólo 4.85 m de la profundidad medida, y una incertidumbre en la transmisividad de 15.53%. Estos valores indican que el método propuesto es muy preciso. Finalmente, se utilizó un método de interpolación por kriging para construir mapas de distribución de los niveles de agua subterránea, el espesor del acuífero, la transmisividad y el rendimiento del agua, basados en los datos de la perforación y del MRS. La fiabilidad de los resultados se evaluó desde varias perspectivas. Los resultados mostraron que este enfoque paso a paso es un método eficaz de detección de fuentes de agua subterránea en zonas áridas con escasos datos hidrogeológicos.

摘要

在大多数干旱地区,由于缺少水文地质数据,查找地下水源以满足居住、灌溉和采矿的用水需求是一个挑战。在本研究中,介绍了一种创新方法,即采用核磁共振法探测蒙古高原适合成为地下水源的地区。首先,用潜在区少量的核磁共振勘探结果确定目标调查区,确定是否存在着含水层、含水层是否有相当大的水量以及松弛时间以及含水层之间是否有水力联系。下一步,在目标调查区进行了密集的核磁共振勘探(总共158个点),并钻孔8个。钻孔数据和核磁共振数据对比结果显示,当核磁共振数据具有很高的信噪比时,核磁共振估算的含水层深度和导水系数与测量的深度只有4.85 m的误差以及与导水系数15.53%的不确定性相关联。这些数值表明,提出的方法有很高的精确度。最后,根据钻孔数据和核磁共振数据,采用克立格插值法绘制地下水位、含水层厚度、导水系数和出水量分布图。通过几个方面评价了结果的可靠性。研究结果显示,步进式的方法是探测水文地质数据匮乏的干旱地区地下水源的有效方法。

Resumo

Na maioria das áreas áridas, devido a dados hidrogeológicos escassos, é um desafio localizar fontes de água subterrânea e atender a demanda de água para usos residenciais, irrigação e mineração. Neste estudo, um método inovador é apresentado, usando ressonância magnética (RM), para detectar áreas adequadas como fontes de água subterrânea no Planalto da Mongólia. Primeiro, uma área alvo de investigação foi identificada com um pequeno número de levantamentos de RM em áreas potenciais, determinando se existem aquíferos, se os aquíferos têm quantidade de água relativamente grande e tempos de relaxamento, e se há conexões hidráulicas entre os aquíferos. Em seguida, uma pesquisa intensiva em RM (158 pontos no total) foi realizada na área de investigação, e oito furos de sondagem foram perfurados. A comparação entre os dados dos poços e os dados de RM mostrou que, quando os dados de RM apresentaram uma alta relação sinal-ruído, a profundidade do aquífero e a transmissividade estimada pela RM foram associadas a um desvio de apenas 4.85 m da profundidade medida e a uma incerteza na transmissividade de 15.53%. Esses valores indicaram que o método proposto é altamente preciso. Finalmente, um método de interpolação de krigagem foi usado para construir mapas de distribuição dos níveis de águas subterrâneas, espessura do aquífero, transmissividade e produção de água, com base nos dados dos furos de sondagem e da RM. A confiabilidade dos resultados foi avaliada sob várias perspectivas. Os resultados mostraram que esta abordagem passo-a-passo é um método eficaz de detecção de fontes de água subterrânea em áreas áridas com dados hidrogeológicos escassos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andersen TR, Poulsen SE, Christensen S, Jørgensen F (2013) A synthetic study of geophysics-based modelling of groundwater flow in catchments with a buried valley. Hydrogeol J 21:491–503

    Article  Google Scholar 

  • Attwa M, Akca I, Basokur A, Günther T (2014) Structure-based geoelectrical models derived from genetic algorithms: a case study for hydrogeological investigations along Elbe River coastal area, Germany. J Appl Geophys 103:57–70

    Article  Google Scholar 

  • Baroncini-Turricchia G, Francés AP, Lubczynski MW, Martínez-Fernández J, Roy J (2014) Integrating MRS data with hydrologic model: Carrizal catchment (Spain). Near Surf Geophys 12:255–269

    Article  Google Scholar 

  • Belkhiri L, Mouni L, Narany TS, Tiri A (2017) Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundw Sustain Develop 4:12–22

    Article  Google Scholar 

  • Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51:3837–3866

    Article  Google Scholar 

  • Boucher M, Favreau G, Vouillamoz JM, Nazoumou Y, Legchenko A (2009) Estimating specific yield and transmissivity with magnetic resonance sounding in an unconfined sandstone aquifer (Niger). Hydrogeol J 17:1805–1815

    Article  Google Scholar 

  • Chalikakis K, Nielsen MR, Legchenko A (2008) MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark. J Appl Geophys 66:176–187

    Article  Google Scholar 

  • Chebbi A, Bargaoui ZK, Abid N, Cunha MDC (2017) Optimization of a hydrometric network extension using specific flow, kriging and simulated annealing. J Hydrol 555:971–982

    Article  Google Scholar 

  • Descloitres M, Chalikakis K, Legchenko A, Moussa AM, Genthon P, Favreau G, Coz ML, Boucher M, Oï M (2013) Investigation of groundwater resources in the Komadugu Yobe Valley (Lake Chad Basin, Niger) using MRS and TDEM methods. J Afr Earth Sci 87:71–85

    Article  Google Scholar 

  • Dlugosch R, Günther T, Müller-Petke M, Yaramanci U (2013) Improved prediction of hydraulic conductivity for coarse-grained, unconsolidated material from nuclear magnetic resonance. Geophysics 78(4):55–64

    Article  Google Scholar 

  • Eissa MA, Thomas JM, Pohll G, Hershey RL, Dahab KA, Dawoud MI, Elshiekh A, Gomaa MA (2013) Groundwater resource sustainability in the Wadi Watir delta, Gulf of Aqaba, Sinai, Egypt. Hydrogeol J 21:1833–1851

    Article  Google Scholar 

  • Ezersky MG, Frumkin A (2017) Evaluation and map** of Dead Sea coastal aquifers salinity using transient electromagnetic (TEM) resistivity measurements. C R Geosci 349:1–11

    Article  Google Scholar 

  • Fadili A, Najib S, Mehdi K, Riss J, Malaurent P, Makan A (2017) Geoelectrical and hydrochemical study for the assessment of seawater intrusion evolution in coastal aquifers of Oualidia, Morocco. J Appl Geophys 146:178–187

    Article  Google Scholar 

  • Goebel M, Pidlisecky A, Knight R (2017) Resistivity imaging reveals complex pattern of saltwater intrusion along Monterey coast. J Hydrol 551:746–755

    Article  Google Scholar 

  • Gorelick SM, Zheng CM (2015) Global change and the groundwater management challenge. Water Resour Res 51:3031–3051

    Article  Google Scholar 

  • Günther T, Müller-Petke M (2012) Hydraulic properties at the North Sea island of Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings. Hydrol Earth Syst Sci 16:3279–3291

    Article  Google Scholar 

  • Hasan M, Shang Y, Akhter G, Khan M (2017) Geophysical investigation of fresh–saline water interface: a case study from South Punjab, Pakistan. Groundwater 55(6):841–856

    Article  Google Scholar 

  • Jiang C, Shang X, Lin T, Duan Q, Lin J (2017) Quasi-2D block inversion of large-scale surface nuclear magnetic resonance profile data using a laterally constrained model. Geophysics 82(2):JM1–JM14

    Article  Google Scholar 

  • Kenyon WE, Day PI, Straley C, Wlllemsen JF (1988) A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Annual Technical Conference and Exhibition vol 3, Houston, TX, October 1988, pp 622–636

  • Larsen F, Tran LV, Hoang HV, Tran LT, Christiansen AV, Pham NQ (2017) Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat Geosci 10:376–381

    Article  Google Scholar 

  • Legchenko A, Valla P (2002) A review of the basic principles for proton magnetic resonance sounding measurements. J Appl Geophys 50:3–19

    Article  Google Scholar 

  • Legchenko A, Baltassat JM, Beauce A, Bernard J (2002) Nuclear magnetic resonance as a geophysical tool for hydrogeologists. J Appl Geophys 50:21–46

    Article  Google Scholar 

  • Legchenko A, Baltassat JM, Bobachev A, Martin C, Robain H, Vouillamoz JM (2004) Magnetic resonance sounding applied to aquifer characterization. Groundwater 42(3):363–373

    Article  Google Scholar 

  • Legchenko A, Ezersky M, Girard JF, Baltassat JM, Boucher M, Camerlynck C, Zoubi AA (2008) Interpretation of magnetic resonance soundings in rocks with high electrical conductivity. J Appl Geophys 66:118–127

    Article  Google Scholar 

  • Li F, Zhu J, Deng X, Zhao Y, Li S (2018) Assessment and uncertainty analysis of groundwater risk. Environ Res 160:140–151

    Article  Google Scholar 

  • Lin J, Lin T, Ji Y, Chen Z, Zhao Y, Li H (2013) Non-invasive characterization of water-bearing strata using a combination of geophysical techniques. J Appl Geophys 91:49–65

    Article  Google Scholar 

  • Massoud U, Khalil MM, Tokunaga T, Santos FAM (2016) Preliminary hydrogeophysical investigation at the 10th of Ramadan City, Egypt, by 1D and 2D inversion of VES data. Near Surf Geophys 14(3):287–297

    Article  Google Scholar 

  • Mazzilli N, Boucher M, Chalikakis K, Legchenko A, Jourde H, Champollion C (2016) Contribution of magnetic resonance soundings for characterizing water storage in the unsaturated zone of karst aquifers. Geophysics 81(4):49–61

    Article  Google Scholar 

  • Nielsen MR, Hagensen TF, Chalikakis K, Legchenko A (2011) Comparison of transmissivities from MRS and pum** tests in Denmark. Near Surf Geophys 9:211–223

    Article  Google Scholar 

  • Pan J, Li Z, Zhang Y, Bernard J, Chen L, Gao L, **e M (2017) Correlating intensity of pulse moment with exploration depth in surface NMR. J Appl Geophys 142:1–13

    Article  Google Scholar 

  • Pérez-Bielsa C, Lambán LJ, Plata JL, Rubio FM, Soto R (2012) Characterization of a karstic aquifer using magnetic resonance sounding and electrical resistivity tomography: a case-study of Estaña Lakes (northern Spain). Near Surf Geophys 20:1045–1059

    Google Scholar 

  • Plata JL, Rubio FM (2008) The use of MRS in the determination of hydraulic transmissivity: the case of alluvial aquifers. J Appl Geophys 66:128–139

    Article  Google Scholar 

  • Robinson DA, Binley A, Crook N, Day-Lewis FD, Ferré TPA, Grauch VJS, Knight R, Knoll M, Lakshmi V, Miller R, Nyquist J, Pellerin L, Singha K, Slater L (2008) Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrol Process 22:3604–3635

    Article  Google Scholar 

  • Roy J, Rouleau A, Chouteau M, Bureau M (2008) Widespread occurrence of aquifers currently undetectable with the MRS technique in the Grenville geological province, Canada. J Appl Geophys 66:82–93

    Article  Google Scholar 

  • Scanlon R, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

    Article  Google Scholar 

  • Schirov M, Legchenko AV, Creer G (1991) New direct non-invasive groundwater detection technology for Australia. Explor Geophys 22:333–338

    Article  Google Scholar 

  • Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries: a review. Surv Geophys 28:169–197

    Article  Google Scholar 

  • Tejero R, Gomez-Ortiz D, Heydt GG, Toledo FM, Martínez CMC, Rodriguez MMS, Suarez JJQ (2017) Electrical resistivity imaging of the shallow structures of an intraplate basin: the Guadiana Basin (SW Spain). J Appl Geophys 139:54–64

    Article  Google Scholar 

  • Vouillamoz JM, Descloitres M, Toe G, Legchenko A (2005) Characterization of crystalline basement aquifers with MRS: comparison with boreholes and pum** tests data in Burkina Faso. Near Surf Geophys 3:205–213

    Article  Google Scholar 

  • Vouillamoz JM, Chatenoux B, Mathieu F, Baltassat JM, Legchenko A (2007) Efficiency of joint use of MRS and VES to characterize coastal aquifer in Myanmar. J Appl Geophys 61:142–154

    Article  Google Scholar 

  • Vouillamoz JM, Favreau G, Massuel S, Boucher M, Nazoumou Y, Legchenko A (2008) Contribution of magnetic resonance sounding to aquifer characterization and recharge estimate in semiarid Niger. J Appl Geophys 64:99–108

    Article  Google Scholar 

  • Vouillamoz JM, Lawson FMA, Yalo N, Descloitres M (2015) Groundwater in hard rocks of Benin: regional storage and buffer capacity in the face of change. J Hydrol 520:379–386

    Article  Google Scholar 

  • Vouillamoz JM, Valois R, Lun S, Caron D, Arnout L (2016) Can groundwater secure drinking-water supply and supplementary irrigation in new settlements of North-West Cambodia? Hydrogeol J 24:195–209

    Article  Google Scholar 

  • Wang L, Dong Y, Xu Z, Qiao X (2017) Hydrochemical and isotopic characteristics of groundwater in the northeastern Tennger Desert, northern China. Hydrogeol J 25:2363–2375

    Article  Google Scholar 

  • Wattanasen K, Elming S (2008) Direct and indirect methods for groundwater investigations: a case-study of MRS and VES in the southern part of Sweden. J Appl Geophys 66:104–117

    Article  Google Scholar 

  • Wojnar AJ, Mutiti S, Levy J (2013) Assessment of geophysical surveys as a tool to estimate riverbed hydraulic conductivity. J Hydrol 482:40–56

    Article  Google Scholar 

  • Zeng RQ, Meng XM, Zhang FY, Wang SY, Cui ZJ, Zhang MS, Zhang Y, Chen G (2016) Characterizing hydrological processes on loess slopes using electrical resistivity tomography: a case study of the Heifangtai terrace, Northwest China. J Hydrol 541:742–753

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Chuandong Jiang at Jilin University (China) and ** Zhao, Mingxin Wang, Di Liu & Tiejun Liu

  • Authors

    Corresponding author

    Correspondence to **angqian Yu.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Yu, X., Zhao, G., Zhao, Y. et al. Detecting groundwater sources for water supplies using magnetic resonance sounding in arid areas with scarce hydrogeological data: a case study on the Mongolian Plateau. Hydrogeol J 27, 1739–1752 (2019). https://doi.org/10.1007/s10040-019-01939-8

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10040-019-01939-8

    Keywords

    Navigation