Log in

Frictional weakening of a granular sheared layer due to viscous rolling revealed by discrete element modeling

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Considering a 3D sheared granular layer through a discrete element modeling, it is well known the rolling resistance influences the macro friction coefficient. Even if the rolling resistance role has been deeply investigated previously because it is commonly used to represent the shape and the roughness of the grains, the rolling viscous dam** coefficient is still not studied. This parameter is rarely used or only to dissipate the energy and to converge numerically. This paper revisits the physical role of those coefficients with a parametric study of the rolling friction and the rolling dam** at different shear speeds and different confinement pressures. It has been observed the dam** coefficient induces a frictional weakening. Indeed, competition between the rolling resistance and the rolling dam** occurs. Angular resistance aims to avoid grains rolling, decreasing the difference between the angular velocities of grains. Whereas, angular dam** acts in the opposite, avoiding a change in the difference between the angular velocities of grains. In consequence, grains stay rolling and the sample toughness decreases. This effect must be considered to not overestimate the frictional response of a granular layer.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Myers, R., Aydin, A.: The evolution of faults formed by shearing across joint zones in sandstone. J. Struct. Geol. 26, 947–966 (2004). https://doi.org/10.1016/j.jsg.2003.07.008

    Article  ADS  Google Scholar 

  2. Poulet, T., Veveakis, M., Herwegh, M., Buckingham, T., Regenauer-Lieb, K.: Modeling episodic fluid-release events in the ductile carbonates of the Glarus thrust. Geophys. Res. Lett. 41, 7121–7128 (2014). https://doi.org/10.1002/2014GL061715

    Article  ADS  Google Scholar 

  3. Segui, C., Rattez, H., Veveakis, M.: On the stability of deep-seated landslides. The cases of Vaiont (Italy) and Shu** (Three Gorges Dam, China). J. of Geophys. Res. Earth Surf 125, e2019JF005203 (2020). https://doi.org/10.1029/2019JF005203

    Article  Google Scholar 

  4. Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35, 245–296 (1997). https://doi.org/10.1029/97RG00426

    Article  ADS  Google Scholar 

  5. Sulem, J., Vardoulakis, I.G.: Bifurcation Analysis in Geomechanics, 1st edn. CRC Press, London (1995). https://doi.org/10.1201/9781482269383

    Book  Google Scholar 

  6. Sulem, J., Stefanou, I., Veveakis, M.: Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure. Granul. Matter 13, 261–268 (2011). https://doi.org/10.1007/s00603-018-1529-7

    Article  Google Scholar 

  7. Rattez, H., Stefanou, I., Sulem, J.: The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: theory and linear stability analysis. J. Mech. Phys. Solids 115, 54–76 (2018). https://doi.org/10.1016/j.jmps.2018.03.004

    Article  ADS  MathSciNet  Google Scholar 

  8. Rattez, H., Stefanou, I., Sulem, J., Veveakis, M., Poulet, T.: The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults Part II: Numerical implementation and post-bifurcation analysis. J. Mech. Phys. Solids. 115, 1–29 (2018). https://doi.org/10.1016/j.jmps.2018.03.003

    Article  ADS  MathSciNet  Google Scholar 

  9. Rattez, H., Stefanou, I., Sulem, J., Veveakis, M., Poulet, T.: Numerical analysis of strain localization in rocks with thermo-hydro-mechanical couplings using Cosserat continuum. Rock Mech. Rock Eng. 51, 3295–3311 (2018). https://doi.org/10.1007/s00603-018-1529-7

    Article  ADS  Google Scholar 

  10. Papachristos, E., Stefanou, I., Sulem, J.: A discrete elements study of the frictional behavior of fault gouges. J. Geophys. Res. Solid Earth. 128, e2022JB025209 (2023). https://doi.org/10.1029/2022JB025209

    Article  ADS  Google Scholar 

  11. Dubois, F., Acary, V., Jean, M.: The Contact Dynamics method: a nonsmooth story. C. R. Méc. 346, 247–262 (2018). https://doi.org/10.1016/j.crme.2017.12.009

    Article  ADS  Google Scholar 

  12. Burman, B.C., Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotech. 30, 331–336 (1980). https://doi.org/10.1680/geot.1980.30.3.331

    Article  Google Scholar 

  13. Da Cruz, F., Emam, S., Prochnow, M., Roux, Chevoir: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Rev. E Stat. Nonlinear Soft Matter Phys. 72, 1–17 (2005). https://doi.org/10.1103/PhysRevE.72.021309

    Article  Google Scholar 

  14. Imole, O.I., Wojtkowski, M., Magnanimo, V., Luding, S.: Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading. Phys. Rev. E 89, 042210 (2014). https://doi.org/10.1103/PhysRevE.89.042210

    Article  ADS  Google Scholar 

  15. González, S., Windows-Yule, C.R.K., Luding, S., Parker, D.J., Thornton, A.R.: Forced axial segregation in axially inhomogeneous rotating systems. Phys. Rev. E 92, 022202 (2015). https://doi.org/10.1103/PhysRevE.92.022202

    Article  ADS  Google Scholar 

  16. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. CRC Press, London (2011). https://doi.org/10.1201/9781482266498

    Book  Google Scholar 

  17. Hanley, K.J., O’Sullivan, C., Huang, X.: Particle-scale mechanics of sand crushing in compression and shearing using DEM. Soils and Found. 55, 1100–1112 (2015). https://doi.org/10.1016/j.sandf.2015.09.011

    Article  Google Scholar 

  18. Zhang, N., Ciantia, M.O., Arroyo, M., Gens, A.: A contact model for rough crushable sand. Soils and Found. 61, 798–814 (2021). https://doi.org/10.1016/j.sandf.2021.03.002

    Article  Google Scholar 

  19. Elliott, D., Rutter, E.: The kinetics of rock deformation by pressure solution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci 283, 218–219 (1976). https://doi.org/10.1098/rsta.1976.0079

    Article  ADS  Google Scholar 

  20. Florian, K.L.: A model for intergranular pressure solution in open systems. Tectonophys. 245, 153–170 (1995). https://doi.org/10.1016/0040-1951(94)00232-X

    Article  Google Scholar 

  21. van den Ende, M..P..A., Marketos, G., Niemeijer, A..R., Spiers, C..J.: Investigating compaction by intergranular pressure solution using the discrete element method. J. Geophys. Res. Solid Earth 123, 107–124 (2018). https://doi.org/10.1002/2017JB014440

    Article  ADS  Google Scholar 

  22. Abe, S., Dieterich, J.H., Mora, P., Place, D.: Simulation of the influence of rate- and state-dependent friction on the macroscopic behavior of complex fault zones with the lattice solid model. Pure Appl. Geophys. 159, 1967–1983 (2002). https://doi.org/10.1007/s00024-002-8718-7

    Article  ADS  Google Scholar 

  23. Morgan, J.K.: Particle dynamics simulations of rate- and state-dependent frictional sliding of granular fault gouge. Pure Appl. Geophys. 161, 1877–1891 (2004). https://doi.org/10.1007/s00024-004-2537-y

    Article  ADS  Google Scholar 

  24. Potyondy, D..O., Cundall, P..A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  25. Zhao, H., Sang, Y., Deng, A., Ge, L.: Influences of Stiffness Ratio, Friction Coefficient and Strength Ratio on the Macro Behavior of Cemented Sand Based on DEM. In: Li, X., Feng, Y., Mustoe, G. (eds) DEM 2016: Proceedings of the 7th International Conference on Discrete Element Methods, pp. 485-495. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1926-5_51

  26. Casas, N., Mollon, G., Daouadji, A.: Cohesion and Initial porosity of granular fault gouges control the breakdown energy and the friction law at the onset of sliding. ESS Open Archive (2020). https://doi.org/10.1002/essoar.10504966.1

    Article  Google Scholar 

  27. Soulié, F., El Youssoufi, M.S., Cherblanc, F., Saix, C.: Capillary cohesion and mechanical strength of polydisperse granular materials. Eur. Phys. J. E 21, 349–357 (2006). https://doi.org/10.1140/epje/i2006-10076-2

    Article  Google Scholar 

  28. Vardoulakis, I.: Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Géotech 52, 157–171 (2002). https://doi.org/10.1680/geot.2002.52.3.157

    Article  Google Scholar 

  29. Rice, J..R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. Solid Earth 111, B05311 (2006). https://doi.org/10.1029/2005JB004006

    Article  ADS  Google Scholar 

  30. Gan, Y., Rognon, P., Einav, I.: Phase transitions and cyclic pseudotachylyte formation in simulated faults. Philos. Mag. 92, 3405–3417 (2012). https://doi.org/10.1080/14786435.2012.669062

    Article  ADS  Google Scholar 

  31. Mollon, G., Aubry, J., Schubnel, A.: Simulating melting in 2D seismic fault gouge. J. Geophys. Res. Solid Earth 126, 6 (2021). https://doi.org/10.1029/2020JB021485

    Article  Google Scholar 

  32. Ferdowsi, B., Rubin, A..M.: A granular physics-based view of fault friction experiments. J. Geophys. Res. Solid Earth 125, 1–32 (2020). https://doi.org/10.1029/2019JB019016

    Article  Google Scholar 

  33. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004). https://doi.org/10.1140/epje/i2003-10153-0

    Article  Google Scholar 

  34. Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys 78, 1–11 (2008). https://doi.org/10.1103/PhysRevE.78.021301

    Article  Google Scholar 

  35. Binaree, T., Azéma, E., Estrada, N., Renouf, M., Preechawuttipong, I.: Combined effects of contact friction and particle shape on strength properties and microstructure of sheared granular media. Phys. Rev. E 102, 22901 (2020). https://doi.org/10.1103/PhysRevE.102.022901

    Article  ADS  Google Scholar 

  36. Oda, M., Takemura, T., Takahashi, M.: Microstructure in shear band observed by microfocus X-ray computed tomography. Géotech 54, 539–542 (2004). https://doi.org/10.1680/geot.2004.54.8.539

    Article  Google Scholar 

  37. Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling. Mech. of Mater. 1, 269–283 (1982). https://doi.org/10.1016/0167-6636(82)90027-8

    Article  Google Scholar 

  38. Zhou, Y..C., Wright, B..D., Yang, R..Y., Xu, B..H., Yu, A..B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A Stat. Mech. Appl 269, 536–553 (1999). https://doi.org/10.1016/S0378-4371(99)00183-1

    Article  Google Scholar 

  39. Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H..J., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys 74, 1–10 (2006). https://doi.org/10.1103/PhysRevE.74.031306

    Article  Google Scholar 

  40. Papanicolopulos, S.A., Veveakis, E.: Sliding and rolling dissipation in Cosserat plasticity. Granul. Matter 13, 197–204 (2011). https://doi.org/10.1007/s10035-011-0253-8

    Article  Google Scholar 

  41. Zhao, C., Li, C.: Influence of rolling resistance on the shear curve of granular particles. Phys. A Stat. Mech. and Appl 460, 44–53 (2016). https://doi.org/10.1016/j.physa.2016.04.043

    Article  MathSciNet  Google Scholar 

  42. Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206, 269–282 (2011). https://doi.org/10.1016/j.powtec.2010.09.030

    Article  Google Scholar 

  43. Iwashita, K., Oda, M.: Rolling Resistance At Contacts in Simulation of Shear Band. Asce 124, 285–292 (1998). https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)

    Article  Google Scholar 

  44. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000). https://doi.org/10.1016/S0032-5910(99)00236-3

    Article  Google Scholar 

  45. Murakami, A., Sakaguchi, H., Hasegawa, T.: Dislocation, vortex and couple stress in the formation of shear bands under trap-door problems. Soils and found. 37, 123–135 (1997). https://doi.org/10.3208/sandf.37.123

    Article  Google Scholar 

  46. Zhang, W., Wang, J., Jiang, M.: DEM-aided discovery of the relationship between energy dissipation and shear band formation considering the effects of particle rolling resistance. J. Geotech. Geoenviron. Eng. 139, 1512–1527 (2013). https://doi.org/10.1061/(asce)gt.1943-5606.0000890

    Article  Google Scholar 

  47. Tang, H., Dong, Y., Chu, X., Zhang, X.: The influence of particle rolling and imperfections on the formation of shear bands in granular material. Granul. Matter 18, 1–12 (2016). https://doi.org/10.1007/s10035-016-0607-3

    Article  Google Scholar 

  48. Nho, H., Nguyen, G., Scholtès, L., Guglielmi, Y., Victor, F.: Micromechanics of sheared granular layers activated by fluid pressurization Micromechanics of sheared granular layers activated by fluid pressurization. Geophys. Res. Lett. 48, e2021GL093222 (2021). https://doi.org/10.1002/essoar.10506504.1

    Article  ADS  Google Scholar 

  49. Yang, Y., Cheng, Y.M., Sun, Q.C.: The effects of rolling resistance and non-convex particle on the mechanics of the undrained granular assembles in 2D. Powder Technol. 318, 528–542 (2017). https://doi.org/10.1016/j.powtec.2017.06.027

    Article  Google Scholar 

  50. Liu, Y., Liu, H., Mao, H.: The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granul. Matter 20, 12 (2018). https://doi.org/10.1007/s10035-017-0780-z

    Article  Google Scholar 

  51. Barnett, N., Mizanur Rahman, M.D., Rajibul Karim, M.D., Nguyen, H.B.K.: Evaluating the particle rolling effect on the characteristic features of granular material under the critical state soil mechanics framework. Granul. Matter 22, 89 (2020). https://doi.org/10.1007/s10035-020-01055-5

    Article  Google Scholar 

  52. Godet, M.: The third-body approach: a mechanical view of wear. Wear 100, 437–452 (1984). https://doi.org/10.1016/0043-1648(84)90025-5

    Article  Google Scholar 

  53. Colas, G., Saulot, A., Godeau, C., Michel, Y., Berthier, Y.: Decrypting third body flows to solve dry lubrication issue - MoS2 case study under ultrahigh vacuum. Wear 305, 192–204 (2013). https://doi.org/10.1016/j.wear.2013.06.007

    Article  Google Scholar 

  54. Jensen, R.P., Bosscher, P.J., Plesha, M.E., Edil, T.B.: DEM simulation of granular media-structure interface: effects of surface roughness and particle shape. Int J Numer Anal Methods Geomech. 23, 531–547 (1999)

    Article  Google Scholar 

  55. Kozicki, J., Tejchman, J.: Numerical simulations of sand behavior using DEM with two different descriptions of grain roughness. In: Oñate, E., Owen, D.R.J. (Eds) II International Conference on Particle-based Methods - Fundamentals and Applications. Particles 2011 (2011)

  56. Mollon, G., Quacquarelli, A., Andò, E., Viggiani, G.: Can friction replace roughness in the numerical simulation of granular materials ? Granul. Matter 22, 42 (2020). https://doi.org/10.1007/s10035-020-1004-5

    Article  Google Scholar 

  57. Garcia, X., Latham, J.P., ** sphere algorithm to represent real particles in discrete element modelling. Geotech. 59, 779–784 (2009). https://doi.org/10.1680/geot.8.T.037

    Article  Google Scholar 

  58. Podlozhnyuk, A.: Modelling superquadric particles in DEM and CFD-DEM: implementation, validation and application in an open-source framework. (2018)

  59. Cundall, P.: Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech 25, 107–116 (1988). https://doi.org/10.1016/0148-9062(88)92293-0

    Article  Google Scholar 

  60. Nezami, E.G., Hashash, Y.M.A., Zhao, D., Ghaboussi, J.: A fast contact detection algorithm for 3-D discrete element method. Comput. Geotech. 31, 575–587 (2004). https://doi.org/10.1016/j.compgeo.2004.08.002

    Article  Google Scholar 

  61. Alonso-Marroquin, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11, 317–329 (2009). https://doi.org/10.1007/s10035-009-0139-1

    Article  Google Scholar 

  62. Estrada, N., Azéma, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E - Stat. Nonlinear Soft Matter. Phys. 84, 1–2 (2011). https://doi.org/10.1103/PhysRevE.84.011306

    Article  Google Scholar 

  63. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012). https://doi.org/10.1016/j.powtec.2011.10.057

    Article  Google Scholar 

  64. Rorato, R., Arroyo, M., Gens, A., Andò, E., Viggiani, G.: Image-based calibration of rolling resistance in discrete element models of sand. Comput. Geotech. 131, 103929 (2021). https://doi.org/10.1016/j.compgeo.2020.103929

    Article  Google Scholar 

  65. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005). https://doi.org/10.1016/j.compgeo.2005.05.001

    Article  Google Scholar 

  66. Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (1985). https://doi.org/10.1017/CBO9781139171731

    Book  Google Scholar 

  67. Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12, 140–152 (2012). https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  68. Anthony, J., Marone, C.: Influence of particle characteristics on granular friction. J. Geophys. Res. Solid Earth 110, 1–14 (2005). https://doi.org/10.1029/2004JB003399

    Article  Google Scholar 

  69. Koval, G., Chevoir, F., Roux, J.N., Sulem, J., Corfdir, A.: Interface roughness effect on slow cyclic annular shear of granular materials. Granul. Matter 13, 525–540 (2011). https://doi.org/10.1007/s10035-011-0267-2

    Article  Google Scholar 

  70. Rattez, H., Shi, Y., Sac-Morane, A., Klaeyle, T., Mielniczuk, B., Veveakis, M.: Effect of grain size distribution on the shear band thickness evolution in sand. Géotech. 72, 350–363 (2020). https://doi.org/10.1680/jgeot.20.P.120

    Article  Google Scholar 

  71. Dieterich, J..H.: Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84, 2161–2168 (1979). https://doi.org/10.1029/JB084iB05p02161

    Article  Google Scholar 

  72. Morrow, C.A., Byerlee, J.D.: Experimental studies of compaction and dilatancy during frictional sliding on faults containing gouge. J. Struct. Geol. 11, 815–825 (1989). https://doi.org/10.1016/0191-8141(89)90100-4

    Article  ADS  Google Scholar 

  73. Beroza, G.C., Jordan, T.H.: Searching for slow and silent earthquakes using free oscillations. J. Geophys. Res. 95, 2485–2510 (1990). https://doi.org/10.1029/JB095iB03p02485

    Article  ADS  Google Scholar 

  74. Idrissi, H., Samaee, V., Lumbeeck, G., van der Werf, T., Pardoen, T., Schryvers, D., Cordier, P.: In situ quantitative tensile testing of antigorite in a transmission electron microscope. J. Geophys. Res Solid Earth 125, 1–12 (2020). https://doi.org/10.1029/2019JB018383

    Article  Google Scholar 

  75. Cavarretta, I., Coop, M., O’Sullican, C.: The influence of particle characteristics on the behaviour of coarse grained soils. Geotech. 60, 413–424 (2010). https://doi.org/10.1680/geot.2010.60.6.413

    Article  Google Scholar 

  76. Thornton, C., Randall, C.W.: Applications of theoretical contact mechanics to solid particle system simulation. Micromech. Granul. Mater. 20, 133–142 (1988). https://doi.org/10.1016/B978-0-444-70523-5.50023-0

    Article  Google Scholar 

  77. Roux, J.N., Combe, G.: Quasistatic rheology and the origins of strain. C. R. Phys. 3, 131–140 (2002). https://doi.org/10.1016/S1631-0705(02)01306-3

    Article  ADS  Google Scholar 

  78. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996). https://doi.org/10.1103/RevModPhys.68.1259

    Article  ADS  Google Scholar 

  79. Zhu, F., Zhao, J.: Interplays between particle shape and particle breakage in confined continuous crushing of granular media. Powder Technol. 378, 455–467 (2021). https://doi.org/10.1016/j.powtec.2020.10.020

    Article  Google Scholar 

  80. Ueda, T., Matsushima, T., Yamada, Y.: DEM simulation on the one-dimensional compression behavior of various shaped crushable granular materials. Granul. Matter 15, 675–684 (2013). https://doi.org/10.1007/s10035-013-0415-y

    Article  Google Scholar 

  81. Zhang, X., Hu, W., Scaringin, G., Baudet, B.A., Han, W.: Particle shape factors and fractal dimension after large shear strains in carbonate sand. Geotech. Lett. 8, 73–79 (2018). https://doi.org/10.1680/jgele.17.00150

    Article  Google Scholar 

  82. Buscarnera, G., Einav, I.: The mechanics of brittle granular materials with coevolving grain size and shape. Proc. R. Soc. A 477, 20201005 (2021). https://doi.org/10.1098/rspa.2020.1005

    Article  ADS  MathSciNet  Google Scholar 

  83. Morgan, J..K.: Numerical simulations of granular shear zones using the distinct element method. 2. Effects of particle size distribution and interparticle friction on mechanical behavior. J. of Geophys. Res.: Solid Earth 104, 2721–2732 (1999). https://doi.org/10.1029/1998jb900055

    Article  Google Scholar 

  84. Rattez, H., Disidoro, F., Sulem, J., Veveakis, M.: Influence of dissolution on long-term frictional properties of carbonate fault gouge. Geomech. Energy Environ. 26, 100234 (2021). https://doi.org/10.1016/j.gete.2021.100234

    Article  Google Scholar 

Download references

Acknowledgements

Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region. Support by the CMMI-2042325 project is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Sac-Morane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sac-Morane, A., Veveakis, M. & Rattez, H. Frictional weakening of a granular sheared layer due to viscous rolling revealed by discrete element modeling. Granular Matter 26, 36 (2024). https://doi.org/10.1007/s10035-024-01407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01407-5

Keywords

Navigation