Log in

Three-dimensional mesoscale modelling of the compressive behaviors of coral sand

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper develops a novel three-dimensional (3D) mesoscale modelling approach to study the mechanical responses of coral sands under quasi-static and dynamic compressive loading. A series of algorithms were developed to generate the 3D random particle models with controllable shape and size configurations to simulate the coral sands with random shape characteristics. Subsequently, a new compaction algorithm combining the gravity action and mechanical motion of particle models was proposed to create the 3D sand particulate system with various particle gradations. Using the 3D unstructured meshing algorithm, the finite element model of particulate system was obtained. Finally, the quasi-static and dynamic compressive behaviors of coral sands were numerically investigated in terms of the axial/lateral stress–strain curves, the mesoscopic deformation processes, and the particle breakage patterns. The results indicate that there are obvious differences in the stress–strain curves and deformation modes of coral sands under quasi-static and dynamic compression loads. Through the explicit simulation and quantitative analysis on the deformation process and particle breakage of coral sands, the grain-level responses and failure mechanisms of coral sands under different loading conditions were fully understood. Above all, it was demonstrated that the developed 3D mesoscale model has a significant feasibility in simulating and analyzing the mechanical properties of sand particulate system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wang, J., Fan, P., Wang, M., Dong, L., Ma, L., Gao, L.: Experimental study of one-dimensional compression creep in crushed dry coral sand. Can. Geotech. J. 57(12), 1854–1869 (2020)

    Article  Google Scholar 

  2. Sun, J., Wang, R.: Influence of confining pressure on particle breakage and shear expansion of calcareous sand. Chin. J. Rock Mech. Eng. 23(4), 641–644 (2004)

    Google Scholar 

  3. Noorany, I.: Classification of marine sediments. J. Geotech. Geoenviron. Eng. 115(1), 23–37 (1989)

    Article  Google Scholar 

  4. Stark, N., Wilkens, R., Ernstsen, V.B., Lambers-Huesmann, M., Stegmann, S., Kopf, A.: Geotechnical properties of sandy seafloors and the consequences for dynamic penetrometer interpretations: quartz sand versus carbonate sand. Geotech. Geol. Eng. 30(1), 1–14 (2012)

    Article  Google Scholar 

  5. Shahnazari, H., Rezvani, R.: Effective parameters for the particle breakage of calcareous sands: an experimental study. Eng. Geol. 159, 98–105 (2013)

    Article  Google Scholar 

  6. Jafarian, Y., Javdanian, H., Haddad, A.: Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions. J. Soils Found. 58(1), 172–184 (2018)

    Article  Google Scholar 

  7. Chian, S.C., Tan, B.C.V., Sarma, A.: Projectile penetration into sand: relative density of sand and projectile nose shape and mass. Int. J. Impact Eng. 103, 29–37 (2017)

    Article  Google Scholar 

  8. Rigby, S.E., Fay, S.D., Clarke, S.D., Tyas, A., Reay, J.J., Warren, J.J., Elgy, I.: Measuring spatial pressure distribution from explosives buried in dry Leighton buzzard sand. Int. J. Impact Eng. 96, 89–104 (2016)

    Article  Google Scholar 

  9. Bragov, A.M., Balandin, V.V., Igumnov, L.A., Kotov, V.L., Kruszka, L., Lomunov, A.K.: Impact and penetration of cylindrical bodies into dry and water-saturated sand. Int. J. Impact Eng. 122, 197–208 (2018)

    Article  Google Scholar 

  10. Ting, J.M., Meachum, L., Rowell, J.D.: Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Eng. Comput. 12, 99–108 (1995)

    Article  Google Scholar 

  11. Shen, Y., Zhu, Y., Liu, H., Li, A., Ge, H.: Macro-meso effects of gradation and particle morphology on the compressibility characteristics of calcareous sand. Bull. Eng. Geol. Environ. 77, 1047–1055 (2018)

    Article  Google Scholar 

  12. Hassanlourad, M., Salehzadeh, H., Shahnazari, H.: Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects. Int. J. Civ. Eng. 6, 108–119 (2008)

    Google Scholar 

  13. Shaqour, F.M.: Cone penetration resistance of calcareous sand. Bull. Eng. Geol. Environ. 66, 59–70 (2007)

    Article  Google Scholar 

  14. Wang, W., Li, W., Yao, Z.: Experimental study on shear characteristics of reef coral sand. IOP Conf. Ser. Earth Environ. Sci. 358, 052042 (2019)

    Article  Google Scholar 

  15. Coop, M.R.: The mechanics of uncemented carbonate sands. Géotechnique 40(4), 607–626 (1990)

    Article  Google Scholar 

  16. Lade, P.V., Karimpour, H.: Stress relaxation behaviour in Virginia beach sand. Can. Geotech. J. 52(7), 813–835 (2015)

    Article  Google Scholar 

  17. Lade, P.V., Ligio, C.D., Nam, J.: Strain rate, creep, and stress drop-creep experiments on crushed coral sand. J. Geotech. Geoenviron. Eng. 135(7), 941–953 (2009)

    Article  Google Scholar 

  18. Yu, H., Sun, Z., Tang, C.: Physical and mechanical properties of coral sand in the Nansha Islands. Mar. Sci. Bull. (Chin. Ed.) 8(2), 31–39 (2006)

    Google Scholar 

  19. Lade, P.V., Nam, J., Ligio, C.D.: Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand. J Geotech. Geoenviron. Eng. 136(3), 500–509 (2010)

    Article  Google Scholar 

  20. Lv, Y., Li, F., Liu, Y., Fan, P., Wang, M.: Comparative study of coral sand and silica sand in interlocking-dependent creep. Can. Geotech. J. 54(11), 1601–1611 (2017)

    Article  Google Scholar 

  21. Wang, S., Shen, L., Maggi, F., El-Zein, A., Nguyen, G.D., Zheng, Y., Chen, Z.: Influence of dry density and confinement environment on the high strain rate response of partially saturated sand. Int. J. Impact Eng. 116, 65–78 (2018)

    Article  Google Scholar 

  22. Luo, H., Cooper, W.L., Lu, H.: Effects of particle size and moisture on the compressive behavior of dense Eglin sand under confinement at high strain rates. Int. J. Impact Eng. 65, 40–55 (2014)

    Article  Google Scholar 

  23. Barr, A.D., Clarke, S.D., Tyas, A., Warren, J.A.: Effect of moisture content on high strain rate compressibility and particle breakage in loose sand. Exp. Mech. 58(8), 1331–1334 (2018)

    Article  Google Scholar 

  24. **ao, Y., Liu, H., **ao, P., **ang, J.: Fractal crushing of carbonate sands under impact loading. Géotech. Lett. 6(3), 1–6 (2006)

    Google Scholar 

  25. Lv, Y., Liu, J., **ong, Z.: One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates. J. Rock Mech. Geotech. Eng. 11, 192–201 (2019)

    Article  Google Scholar 

  26. Lv, Y., Liu, J., Zuo, D.: Moisture effects on the undrained dynamic behaviour of calcareous sand at high strain rates: split Hopkinson pressure bar tests. Geotech. Test. J. 42, 725–746 (2019)

    Article  Google Scholar 

  27. Lv, Y., Wang, Y., Zuo, D.: Effects of particle size on dynamic constitutive relation and energy absorption of calcareous sand. Powder Technol. 356, 21–30 (2019)

    Article  Google Scholar 

  28. Dong, K., Ren, H., Ruan, W., Huang, K.: Dynamic mechanical behavior of different coral sand subjected to impact loading. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235(9), 1512–1523 (2020)

    Article  Google Scholar 

  29. Dwivedi, S.K., Teeter, R.D., Felice, C.W., Gupta, Y.M.: Two dimensional mesoscale simulations of projectile instability during penetration in dry sand. J. Appl. Phys. 104, 483–502 (2008)

    Google Scholar 

  30. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  31. Naito, N., Maeda, K., Konno, H., Ushiwatari, Y., Suzuki, K., Kawase, R.: Rockfall impacts on sand cushions with different soil mechanical characteristics using discrete element method. Solis Found. 60, 384–397 (2020)

    Article  Google Scholar 

  32. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  33. Ferrez J.A.: Dynamic triangulations for efficient 3D simulation of granular materials. No. THESIS. EPFL (2001)

  34. Zhao, D., Nezami, E.G., Hashash, Y.M.A., Ghaboussi, J.: Three-dimensional discrete element simulation for granular materials. Eng. Comput. 23(7), 749–770 (2006)

    Article  MATH  Google Scholar 

  35. Stein, A., Geva, E., El-Sana, J.: CudaHull: fast parallel 3D convex hull on the GPU. Comput. Graph. 36, 265–271 (2012)

    Article  Google Scholar 

  36. Mede, T., Chambon, G., Hagenmuller, P., Nicot, F.: A medial axis based method for irregular grain shape representation in DEM simulations. Granul. Matter 20(1), 1–11 (2018)

    Article  Google Scholar 

  37. Wang, X., Wu, Y., Cui, J., Zhu, C., Wang, X.: Shape characteristics of coral sand from the South China Sea. J. Mar. Sci. Eng. 8, 803–827 (2020)

    Article  Google Scholar 

  38. Wu, Z., Zhang, J., Yu, H., Ma, H.: 3D mesoscopic investigation of the specimen aspect-ratio effect on the compressive behavior of coral aggregate concrete. Compos. B Eng. 198, 108025 (2020)

    Article  Google Scholar 

  39. Wu, Z., Zhang, J., Yu, H., Ma, H., Chen, L., Dong, W., Zhang, Y.: Coupling effect of strain rate and specimen size on the compressive properties of coral aggregate concrete: a 3D mesoscopic study. Compos. B Eng. 200, 108299 (2020)

    Article  Google Scholar 

  40. Greenberger, M.: An a priori determination of serial correlation in random numbers. Math. Comput. 15, 383–389 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  41. Häfner, S., Eckardt, S., Luther, T.: Mesoscale modelling of concrete: geometry and numerics. Comput. Struct. 84(7), 450–461 (2006)

    Article  Google Scholar 

  42. Wu, Z., Zhang, J., Fang, Q., Yu, H., Haiyan, M.: Mesoscopic modelling of concrete material under static and dynamic loadings: a review. Constr. Build. Mater. 278, 122419 (2021)

    Article  Google Scholar 

  43. Fang, Q., Zhang, J., Chen, L., Liu, J., Fan, J., Zhang, Y.: An algorithm for the grain-level modelling of a dry sand particulate system. Model Simul. Mater. Sci. Eng. 22(5), 055021 (2014)

    Article  Google Scholar 

  44. Watson, D.F.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput J. 24(2), 167–172 (1981)

    Article  MathSciNet  Google Scholar 

  45. Gosselin, S., Ollivie-Gooch, C.: Tetrahedral mesh generation using Delaunay refinement with non-standard quality measures. Int. J. Numer. Methods Eng. 87(8), 795–820 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen, E.P.: Penetration into dry porous rock: a numerical study on sliding friction simulation. Theor. Appl. Fract. Mech. 11(2), 135–141 (1989)

    Article  Google Scholar 

  47. Fang, Q., Zhang, J., Zhang, Y., Liu, J.: Mesoscopic investigation of the sand particulate system subjected to intense dynamic loadings. Int. J. Impact Eng. 89, 62–71 (2016)

    Article  Google Scholar 

  48. Lv, Y., Li, F., Liu, Y., Fan, P., Wang, M.: Comparative study of coral sand and silica sand in creep under general stress states. Can. Geotech. J. 54(11), 1601–1611 (2016)

    Article  Google Scholar 

  49. Zhang, J., Zhang, Y., Fang, Q.: Numerical simulation of shock wave propagation in dry sand based on a 3D mesoscopic model. Int. J. Impact Eng. 117, 102–112 (2018)

    Article  Google Scholar 

  50. LSTC: LS-DYNA Version 971 Keyword User’s Manual. Livermore Software Technology Corporation, California (2007)

    Google Scholar 

  51. Borg, J.P., Vogler, T.J.: Mesoscale simulations of a dart penetrating sand. Int. J. Impact Eng. 35, 1435–1440 (2008)

    Article  Google Scholar 

  52. Lin, Y., Yao, W., Jafari, M., Wang, N., **a, K.: Quantification of the dynamic compressive response of two Ottawa sands. Exp. Mech. 57(9), 1371–1382 (2017)

    Article  Google Scholar 

  53. Li, H., Chai, H., **ao, X., Huang, J., Luo, S.: Fractal breakage of porous carbonate sand particles: microstructures and mechanisms. Powder Technol. 363, 112–121 (2020)

    Article  Google Scholar 

  54. Parab, N.D., Claus, B., Hudspeth, M.C., Black, J.T., Mondal, A., Sun, J., Chen, W.: Experimental assessment of fracture of individual sand particles at different loading rates. Int. J. Impact Eng. 68, 8–14 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by the China Scholarship Council (No. 202006830096) during a visit of Zhangyu Wu to University College London is also sincerely acknowledged. The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos. 52178190, 52078250 and 51878350, the Science and Technology on Near-Surface Detection Laboratory (6142414200505), and the Interdisciplinary Innovation Fundation for Graduates, NUAA No. KXKCXJJ202005. We sincerely thanks for the instructive suggestions from the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangyu Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The ethics responsibility is informed and acknowledged to all the authors as a part of content of right of informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**hua Zhang and Zhangyu Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wu, Z., Fang, Q. et al. Three-dimensional mesoscale modelling of the compressive behaviors of coral sand. Granular Matter 24, 57 (2022). https://doi.org/10.1007/s10035-022-01218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01218-6

Keywords

Navigation