Log in

Material optimization of the square composite granular structure composed of viscoelastic spheres for improving the impact mitigation performance

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Three mitigation mechanisms can be considered in the design of an impact buffering structure made of granular materials. First, reflection and decomposition of stress wave may occur at the interface of two granules of different materials. Second, energy dissipation happens at the viscoelastic contact region of two adjacent granules. Third, the impact energy carried by stress waves has multiple propagation paths in two- or three-dimensional granular materials. In this study, a two-dimensional square composite structure of spherical granules (SCSPG) employing all the three mitigation mechanisms is designed and optimized as an impact buffering structure. A numerical model is established to investigate the propagation behavior of impact-induced stress wave in a SCSPG composed of viscoelastic spheres. Comprehensive evaluation functions are established to evaluate the impact mitigation performance of the SCSPG based on the consideration that the probability of impact varies with impact location. To reduce the computational complexity in the material optimization process, a two-step strategy integrating a neural network with a genetic algorithm is proposed. The hyperparameters of the neural network are optimized for the purpose of achieving high accuracy with the meta-data generated by solving the numerical model. A selection criterion of an optimal material combination is established with the distribution histogram of fitness function’s values. After the optimization, the numerical solutions of stress waves in SCSPG are improved, thus verifying the optimization results obtained by the two-step strategy. After the optimization, the reduction ratios of the values of the contact force-dependent and the velocity-dependent functions exceeded 55% and 53%, respectively. The proposed evaluation functions and the developed optimization algorithm are applicable to the design of high-performance impact mitigation SCSPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cheng, X., Zhang, J., Bao, J., et al: Low-velocity impact performance and effect factor analysis of scarf-repaired composite laminates. Int. J. Impact Eng. 111, 85–93 (2018)

    Article  Google Scholar 

  2. Zhang, J., Shi, X.H., Soares, C.G.: Experimental study on the response of multi-layered protective structure subjected to underwater contact explosions. Int. J. Impact Eng. 100, 23–34 (2016)

    Article  Google Scholar 

  3. Huang, S.Y., Lou, C.W., Yan, R., et al.: Investigation on structure and impact-resistance property of polyurethane foam filled three-dimensional fabric reinforced sandwich flexible composites. Compos. Part B: Eng. 131, 43–49 (2017)

    Article  Google Scholar 

  4. Raney, J.R., Nadkarni, N., Daraio, C., et al.: Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences, 2016: 201604838

  5. Navarro, P.F., Benson, D.J., Nesterenko, V.F.: Waves in periodic dissipative laminate metamaterial generated by plate impact//AIP Conference Proceedings. AIP Publishing, 2017, 1793(1): 120001

  6. Wu, B., Wang, H., Liu, X., et al.: Tuning the propagation characteristics of the trapped and released strongly nonlinear solitary waves in 1-D composite granular chain of spheres. J. Mech. Mater. Struct. 14(3), 343–360 (2019)

    Article  MathSciNet  Google Scholar 

  7. Leonard, A., Ponson, L., Daraio, C.: Wave mitigation in ordered networks of granular chains. J. Mech. Phys. Solids 73, 103–117 (2014)

    Article  ADS  Google Scholar 

  8. Nesterenko, V.F., Daraio, C., Herbold, E.B., et al.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95(15), 158702 (2005)

    Article  ADS  Google Scholar 

  9. Daraio, C., Nesterenko, V.F., Herbold, E.B., et al.: Energy trap** and impact disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002 (2006)

    Article  ADS  Google Scholar 

  10. Hong, J.: Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 94(10), 108001 (2005)

    Article  ADS  Google Scholar 

  11. Wang, H., Wu, B., Liu, X., et al.: Influencing factors of the performance of an impact buffering made of the composite granular chain. Int. J. Impact Eng. 137, 103463 (2020)

    Article  Google Scholar 

  12. Xu, J., Zheng, B.: Quantitative tuning nanoscale solitary waves. Carbon 111, 62–66 (2017)

    Article  Google Scholar 

  13. Rosas, A., Romero, A.H., Nesterenko, V.F., et al.: Short-pulse dynamics in strongly nonlinear dissipative granular chains. Phys. Rev. E 78(5), 051303 (2008)

    Article  ADS  Google Scholar 

  14. Rosas, A., Romero, A.H., Nesterenko, V.F., et al: Observation of two-wave structure in strongly nonlinear dissipative granular chains. Phys. Rev. Lett. 98(16), 164301 (2007)

    Article  ADS  Google Scholar 

  15. Herbold, E.B., Nesterenko, V.F.: Impact wave structure in a strongly nonlinear lattice with viscous dissipation. Phys. Rev. E 75(2), 021304 (2007)

    Article  ADS  Google Scholar 

  16. Herbold, E.B., Nesterenko, V.F., Daraio, C.: Influence of controlled viscous dissipation on the propagation of strongly nonlinear waves in stainless steel based phononic crystals//AIP Conference Proceedings. AIP, 2006, 845(1): 1523-1526

  17. Carretero-González, R., Khatri, D., Porter, M.A., et al.: Dissipative solitary waves in granular crystals. Phys. Rev. Lett. 102(2), 024102 (2009)

    Article  ADS  Google Scholar 

  18. Leonard, A., Fraternali, F., Daraio, C.: Directional wave propagation in a highly nonlinear square packing of spheres. Exp. Mech. 53(3), 327–337 (2013)

    Article  Google Scholar 

  19. Szelengowicz, I., Kevrekidis, P.G., Daraio, C.: Wave propagation in square granular crystals with spherical interstitial intruders. Phys. Rev. E 86(6), 061306 (2012)

    Article  ADS  Google Scholar 

  20. Szelengowicz, I., Hasan, M.A., Starosvetsky, Y., et al.: Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87(3), 032204 (2013)

    Article  ADS  Google Scholar 

  21. Leonard, A., Daraio, C.: Stress wave anisotropy in centered square highly nonlinear granular systems. Phys. Rev. Lett. 108(21), 214301 (2012)

    Article  ADS  Google Scholar 

  22. Hua, T., Van Gorder, R.A.: Wave propagation and pattern formation in two-dimensional hexagonally-packed granular crystals under various configurations. Granul. Matter 21(1), 3 (2019)

    Article  Google Scholar 

  23. Leonard, A., Chong, C., Kevrekidis, P.G., et al.: Traveling waves in 2D hexagonal granular crystal lattices. Granul. Matter 16(4), 531–542 (2014)

    Article  Google Scholar 

  24. Cundall, P.A.: The measurement and analysis of accelerations in rock slopes. 1971

  25. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  26. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., et al.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007)

    Article  Google Scholar 

  27. Zeghal, M.: Discrete-element method investigation of the resilient behavior of granular materials. J. Transp. Eng. 130(4), 503–509 (2004)

    Article  Google Scholar 

  28. Nishida, M., Tanaka, Y.: DEM simulations and experiments for projectile impacting two-dimensional particle packings including dissimilar material layers. Granul. Matter 12(4), 357–368 (2010)

    Article  Google Scholar 

  29. Fraternali, F., Porter, M.A., Daraio, C.: Optimal design of composite granular protectors. Mech. Adv. Mater. Struct. 17(1), 1–19 (2009)

    Article  Google Scholar 

  30. Kennedy, J., Eberhart, R.: Particle swarm optimization//Proceedings of ICNN’95-international conference on neural networks. IEEE, 1995, 4: 1942-1948

  31. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  32. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  33. David, O.E., Greental, I.: Genetic algorithms for evolving deep neural networks//Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation. 2014: 1451–1452

  34. Ding, S., Su, C., Yu, J.: An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 36(2), 153–162 (2011)

    Article  Google Scholar 

  35. Kalogirou, S.A.: Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl. Energy 77(4), 383–405 (2004)

    Article  Google Scholar 

  36. Herbold, E.B., Nesterenko, V.F., Daraio, C.: Influence of controlled viscous dissipation on the propagation of strongly nonlinear waves in stainless steel based phononic crystals//AIP Conference Proceedings. American Institute of Physics, 2006, 845(1): 1523-1526

  37. Nesterenko, V.: Dynamics of heterogeneous materials, pp. 3–8. Springer Science & Business Media (2013)

  38. Shrestha, B., He, L.X., Hao, H., et al.: Experimental study on relative displacement responses of bridge frames subjected to spatially varying ground motion and its mitigation using superelastic SMA restrainers. Soil Dyn. Earthq. Eng. 109, 76–88 (2018)

    Article  Google Scholar 

  39. Sterba, M., Aubin, C., Wagnac, É: E, et al. Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study. Medical & biological engineering & computing, 2019, 57(6): pp. 1381–1392

  40. Mat, M.N.H., Asmuin, N.Z., Basir, M.F.M., et al.: Effect of impact force for dual-hose dry blasting nozzle geometry for various pressure and distance: an experimental work. Eur. Phys. J. Plus 135(2), 1–11 (2020)

    Article  Google Scholar 

  41. Hwang, H.Y., Lee, J.W., Yang, J., et al.: Sandwich-structured woodpile metamaterials for impact mitigation. Int. J. Appl. Mech. 10(07), 1850078 (2018)

    Article  Google Scholar 

  42. Saeki, M.: Analytical study of multi-particle dam**. J. Sound Vib. 281(3-5), 1133–1144 (2005)

    Article  ADS  Google Scholar 

  43. Yang, Y., Wang, X.: Investigation into the linear velocity response of cantilever beam embedded with impact damper. J. Vib. Control 25(7), 1365–1378 (2019)

    Article  MathSciNet  Google Scholar 

  44. Dyson, F.J.: A note on kurtosis. Journal. Royal Statistical Society (1943)

  45. Balanda, K.P., MacGillivray, H.L.: Kurtosis: a critical review. Am. Stat. 42(2), 111–119 (1988)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Project No. 201906540023), Bei**g Municipal Natural Science Foundation (Project No. 4192006), and Bei**g Nova Program of Science and Technology (Project No. Z191100001119044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ucheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, B., Liu, X. et al. Material optimization of the square composite granular structure composed of viscoelastic spheres for improving the impact mitigation performance. Granular Matter 24, 77 (2022). https://doi.org/10.1007/s10035-022-01217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01217-7

Keywords

Navigation