Log in

Elastic constants obtained analytically from microscopic features for regularly arranged elliptical particle assembly

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

By the micro-structural mechanics approach, this study establishes the quantitative stress–strain relationships at the elastic stage with respect to the microscopic features of the particles for anisotropic granular materials that are composed of regularly arranged elliptical particles with the same size. Firstly, the elliptical particle assembly is equated with a lattice network described by beam elements attached to the center of particles. Then, the elastic stress–strain relationships, which exactly show the features of orthotropic micropolar continuum, are established through analyzing the triangular and hexagonal cells based on the principle of energy balance. Finally, the analytical expressions of eight independent parameters in stress–strain relationships are obtained as the functions of particle shape, size, and microscopic contact stiffnesses. Further, the relationship between microscopic parameters and macroscopic elastic constants for anisotropic granular materials is proposed. The analytical expressions are verified by comparison between theoretical and discrete element method (DEM) results for elliptical particle assembly, and the influences of microscopic parameters on the macroscopic elastic constants are investigated in detail according to the proposed analytical expressions. Our work provides some useful insights for the microscopic explanation and the influences of microscopic parameters on the macroscopic mechanical behavior of granular materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(a\), \(b\) :

The major and minor axes of ellipse

\(e_{ijk}\) :

Permutation tensor

\(E_{i} (i = 1,2)\) :

Elastic modulus along i direction

\(f_{i}^{c}\) :

Contact force

\(G\) :

Shear modulus

\(K_{ij}^{c}\) :

Contact stiffness tensor

\(l_{k}^{c}\) :

Length vector corresponding to the beam c in the triangle cell

\(m\) :

Major-minor axis ratio of elliptical particles

\(M_{i}^{c}\) :

Contact moment

\(R_{E}\), \(R_{B}\) :

Elastic and bending modulus ratios, respectively

\(R_{G}\) :

Shear modulus ratio

\(T_{ij}^{c}\) :

Rotation stiffness tensor

\(u_{i,k}^{o}\) :

Displacement gradient

\(V\) :

The area of the unit cell

α :

The angle between tangential direction and the x-axis at contact points A2 (A3)

\(\beta\) :

Base angle of the isosceles triangle

γ :

Contact anisotropy ratio

\(\delta_{i}^{c}\) :

Relative displacement

\(\varepsilon_{ki}^{o}\) :

Strain tensor

\(\zeta\) :

Shape parameter

\(\eta_{p}^{c}\) :

Position vector from centroid of the triangle cell to the contact point corresponding to the beam c

\(\theta_{i}^{c}\) :

Relative rotation

\(\kappa_{i} (i = 1,2)\) :

Bending modulus along i direction

\(\lambda\) :

Tangential-normal contact stiffness ratio

\(\mu_{pj}\) :

Couple stress tensor

\(\nu_{ij} (i \ne j)\) :

Poisson’s ratio that deformation along j direction due to applied stress along i direction

\(\xi\) :

Rolling-normal contact stiffness ratio

\(\rho\) :

The local rigid rotation ratio

\(\sigma_{mq}\) :

Cauchy stress tensor

\(\omega_{j,p}^{o}\) :

Rotation gradient

References

  1. Chang, C.S., Ma, L.: Modelling of discrete granulates as micropolar continuum. J. Eng. Mech. 116(12), 2703–2721 (1990)

    Article  Google Scholar 

  2. Chang, C.S.: Estimates of elastic moduli for granular material with anisotropic random packing structure. Int. J. Solids Struct. 32(14), 1989–2008 (1995)

    Article  Google Scholar 

  3. Chang, C.S., Wang, T.K., Sluys, L.J., Mier, J.G.M.V.: Fracture modeling using a micro-structural mechanics approach––I theory and formulation. Eng. Fract. Mech. 69(17), 1941–1958 (2002)

    Article  Google Scholar 

  4. Griffiths, D.V., Mustoe, G.G.W.: Modelling of elastic continua using a grillage of structural elements based on discrete element concepts. Int. J. Numer. Methods Eng. 50(7), 1759–1775 (2001)

    Article  Google Scholar 

  5. Tavarez, F.A., Plesha, M.E.: Discrete element method for modelling solid and particulate materials. Int. J. Numer. Methods Eng. 70(4), 379–404 (2007)

    Article  Google Scholar 

  6. Liu, C., Pollard, D.D., Shi, B.: Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. J. Geophys. Res. Solid Earth. 118(1), 71–82 (2013)

    Article  ADS  Google Scholar 

  7. Liu, C., Xu, Q., Shi, B., Deng, S., Zhu, H.: Mechanical properties and energy conversion of 3d close-packed lattice model for brittle rocks. Comput. Geosci. 103, 12–20 (2017)

    Article  ADS  Google Scholar 

  8. Wang, Y., Mora, P.: Macroscopic elastic properties of regular lattices. J. Mech. Phys. Solids 56(12), 3459–3474 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. JoséMiranda, G., Kikuchi, N.: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Meth. Appl. Mech. Eng. 83(2), 143–198 (1990)

    Article  MathSciNet  Google Scholar 

  10. Ghosh, S., Moorthy, S.: Elastic-plastic analysis of arbitrary heterogeneous materials with the voronoi Cell finite element method. Comput. Meth. Appl. Mech. Eng. 121(1–4), 373–409 (1995)

    Article  ADS  Google Scholar 

  11. Costanzo, F., Boyd, J.G., Allen, D.H.: Micromechanics and homogenization of inelastic composite materials with growing cracks. J. Mech. Phys. Solids 44(3), 333–370 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dvorak, G.J., Zhang, J.: Transformation field analysis of damage evolution in composite materials. J. Mech. Phys. Solids 49(11), 2517–2541 (2001)

    Article  ADS  Google Scholar 

  13. Arthur, J.R.F., Menzies, B.K.: Inherent anisotropy in a sand. Géotechnique 22(1), 128–130 (1972)

    Article  Google Scholar 

  14. Oda, M., Koishikawa, I., Higuchi, T.: Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found. 18, 25–38 (1978)

    Article  Google Scholar 

  15. Guo, P.: Modified direct shear test for anisotropic strength of sand. J. Geotech. Geoenviron. Eng. 134(9), 1311–1318 (2008)

    Article  Google Scholar 

  16. Song, F., Zhang, J.M., Cao, G.R.: Experimental investigation of asymptotic state for anisotropic sand. Acta Geotech. 10(5), 571–585 (2015)

    Article  Google Scholar 

  17. Rothenburg, L., Bathurst, R.J.: Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 11(4), 315–329 (1991)

    Article  Google Scholar 

  18. Jiang, M.J., Liu, F., Zhou, Y.: A bond failure criterion for DEM simulations of cemented geomaterials considering variable bond thickness. Int. J. Numer. Anal. Methods Geomech 38(18), 1871–1897 (2014)

    Article  Google Scholar 

  19. Hosseininia, E.S.: Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granul. Matter 14(4), 483–503 (2012)

    Article  Google Scholar 

  20. Jiang, M.J., Sima, J., Li, L., Zhou, C., Cui, L.: Investigation of influence of particle characteristics on the non-coaxiality of anisotropic granular materials using DEM. Int. J. Numer. Anal. Methods Geomech. 41(2), 198–222 (2017)

    Article  Google Scholar 

  21. Jiang, M.J., Zhang, A., Fu, C.: 3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates. Eur. J. Environ. Civ. Eng. 22(S1), 37–56 (2018)

    Article  Google Scholar 

  22. Walton, K.: The effective elastic modulus of a random packing of spheres. J. Mech. Phys. Solids 35(2), 213–226 (1987)

    Article  ADS  Google Scholar 

  23. Cosserat, E., Cosserat, F.: Theorie des corps Deformables. Hermann, Paries (1909)

    MATH  Google Scholar 

  24. Leonetti, L., Fantuzzi, N., Trovalusci, P., Tornabene, F.: Scale effects in orthotropic composite assemblies as micropolar continua: a Comparison between weak-and strong-form finite element solutions. Materials 12(5), 758 (2019)

    Article  ADS  Google Scholar 

  25. Ng, T.T.: Numerical simulations of granular soil using elliptical particles. Comput. Geotech. 16(2), 153–169 (1994)

    Article  MathSciNet  Google Scholar 

  26. Zheng, Q.J., Zhou, Z.Y., Yu, A.B.: Contact forces between viscoelastic ellipsoidal particles. Powder Technol. 248, 25–33 (2013)

    Article  Google Scholar 

  27. Lekhnitskii, S.G.: Theory of elasticity of an anisotropic body. Moscow: Mir (1981)

  28. Eringen, A.C.: Theory of micropolar elasticity. In: Microcontinuum Field Theories. Springer, New York, NY (1999). https://doi.org/10.1007/978-1-4612-0555-5_5

    Chapter  MATH  Google Scholar 

  29. Casolo, S.: Modelling in-plane micro-structure of masonry walls by rigid elements. Int. J. Solids Struct. 41(13), 3625–3641 (2004)

    Article  Google Scholar 

  30. Casolo, S.: Macroscopic modelling of structured materials: relationship between orthotropic cosserat continuum and rigid elements. Int. J. Solids Struct. 43(3–4), 475–496 (2006)

    Article  Google Scholar 

  31. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  32. Bathurst, R.J., Rothenburg, L.: Note on a random isotropic granular material with negative Poisson’s ratio. Int. J. Eng. Sci. 26(4), 373–383 (1988)

    Article  Google Scholar 

  33. Wadee, M.K., Wadee, M.A., Bassom, A.P.: Effects of orthotropy and variation of Poisson’s ratio on the behaviour of tubes in pure flexure. J. Mech. Phys. Solids 55(5), 1086–1102 (2007)

    Article  ADS  Google Scholar 

  34. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  35. Jiang, M.J., Yu, H.S., Harris, D.: Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int. J. Numer. Anal. Methods Geomech. 30(8), 723–761 (2006)

    Article  Google Scholar 

  36. Jiang, M.J., Zhu, H.H.: An interpretation of the internal length in chang’s couple-stress continuum for bonded granulates. Granul. Matter 9(6), 431–437 (2007)

    Article  Google Scholar 

  37. Chang, C.S., Shi, Q.: Mix-mode elastic finite element formulation for bonded granular material considering rotation of particles. J. Eng. Mech. 131(2), 120–130 (2005)

    Article  ADS  Google Scholar 

  38. Shen, Z.F., Jiang, M.J., Thornton, C.: DEM simulation of bonded granular material part I contact model and application to cemented sand. Comput. Geotech. 75(may), 192–209 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11872281, 51639008, and 51890911), and the State Key Laboratory of Disaster Reduction in Civil Engineering (Grant No. SLDRCE19-A-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z.H., Wang, H.N. & Jiang, M.J. Elastic constants obtained analytically from microscopic features for regularly arranged elliptical particle assembly. Granular Matter 23, 29 (2021). https://doi.org/10.1007/s10035-021-01088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01088-4

Keywords

Navigation