Log in

Early damage detection in planetary gear transmission in different operating conditions

Frühzeitige Erkennung von Schäden in Planetenradgetrieben unter verschiedenen Betriebsbedingungen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Planetary gear transmissions are sensitive to various running environmental factors. These external conditions keep these systems often subjected to faults and/or malfunction especially in gears components. So, it is a crucial task to spot in advance all kind of degradation that could lead to a harmful event or accident to the system. In the same context, this study aims to investigate the case of combined faults detection and analyse their impact on the vibration dynamic response in a two stages planetary gear transmission in diverse operating conditions. For this, a Lumped Mass Model (LMM), referred to a real test rig where experimental tests, is established. In this model, the Time Varying Mesh Stiffness (TVMS) were modelled in different frameworks and configurations such as the healthy, the single and the combined damage conditions. After acquiring acceleration signals from the model, time, frequency and order analysis data processing were executed to generate health related data for the planetary gear. Consequently, it is concluded that the system vibration response is sensitive to the internal excitation particularly the case of combined defects. The obtained results show the ability of the developed model to identify the frequency characteristics of defect and the transmission in each configuration. The experimental and simulated results are compared and correlated.

Zusammenfassung

Das Planetengetriebe/Das Umlaufrädergetriebe ist empfindlich gegen verschiedene Umweltfaktoren. Die (Umweltfaktoren) lassen sich in das ganze System und vor allem in den Komponenten des Getriebes eine Störung auslösen. Aus diesem Grund, von Anfang an, ist es sehr wichtig, jede Art von Abbau die eine schädliche Wirkung hat oder zu dem Ausfall des Systems führen könnte, zu erkennen. Gleichzeitig, diese Studie zielt darauf ab, den Fall der kombinierten Fehlererkennung zu untersuchen und deren Auswirkungen auf die schwingungsdynamische Reaktion in einem zweistufigen Planetengetriebe unter verschiedenen Betriebsbedingungen zu analysieren. Dazu, wird ein Modell der konzentrierten Masse (Lumped Mass Model [LMM]), bezogen auf einen realen Prüfstand, in dem, experimentelle Teste durchgeführt werden, erstellt. In diesem Modell wurde die Zeitlich variierende Maschensteifigkeit (Time Varying Mesh Stiffness [TVMS]) in verschiedenen Rahmenbedingungen und Konfigurationen nämlich der Gesundheit, dem Einzel- und dem kombinierten Schadenszustand modelliert. Nach dem Erfassen von Beschleunigungssignalen aus dem Modell, wurden Zeit-, Frequenz- und Ordnungsanalyse-Datenverarbeitungen durchgeführt, um Daten, bezüglich zu der Gesundheit, für das Planetengetriebe zu generieren. Folglich, wird es festgestellt, dass die Schwingungsantwort des Systems ist empfindlich gegen die innere Erregung, ganz besonders, im Fall  von kombinierten Defekten. Die vorliegenden Ergebnisse zeigen die Fähigkeit des entwickelten Modells, die Frequenzeigenschaften von Defekten und die Übertragung in jeder Konfiguration zu identifizieren. Die experimentellen und simulierten Ergebnisse werden verglichen und korreliert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang M, Wang K, Wei D, Zuo MJ (2018) Amplitudes of characteristic frequencies for fault diagnosis of planetary gearbox. J Sound Vib 432:119–132

    Article  Google Scholar 

  2. Gelman L, Zimroz R, Birkel J, Leigh-Firbank H, Simms DM, Waterland B, Whitehurst G (2005) Adaptive vibration condition monitoring technology for local tooth damage in gearboxes

    Book  Google Scholar 

  3. Ma H, Zeng J, Feng R, Pang X, Wang Q, Wen B (2015) Review on dynamics of cracked gear systems. Eng Fail Anal 55:224–245

    Article  Google Scholar 

  4. Fan L, Wang S, Wang X, Han F, Lyu H (2016) Nonlinear dynamic modeling of a helicopter planetary gear train for carrier plate crack fault diagnosis. Chin Jaeronaut 29:675–687

    Article  Google Scholar 

  5. Chaari F, Fakhfakh T, Haddar M (2009) Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness. Eur J Mech A Solid 28(3):461–468

    Article  MATH  Google Scholar 

  6. Liang X, Zhang H, Liu L, Zuo MJ (2016) The influence of tooth pitting on the mesh stiffness of a pair of external spur gears. Mech Mach Theory 106:1–15

    Article  Google Scholar 

  7. Ma H, Li Z, Feng M, Feng R, Wen B (2016) Time-varying mesh stiffness calculation of spur gears with spalling defect. Eng Fail Anal 66:166–176

    Article  Google Scholar 

  8. Saxena A, Parey A, Chouksey M (2016) Time varying mesh stiffness calculation of spur gear pair considering sliding friction and spalling defects. Eng Fail Anal 70:200–211

    Article  Google Scholar 

  9. Lewicki DG (2002) Gear crack propagation path studies-guidelines for ultra-safe design. J Am Helicopter Soc 47(1):64–72

    Article  Google Scholar 

  10. Chaari F, Fakhfakh T, Haddar M (2006) Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking. J Fail Anal Prev 6(2):73–78

    Article  Google Scholar 

  11. Cheng Z, Hu N, Zhang X (2012) Crack level estimation approach for planetary gearbox based on simulation signal and GRA. J Sound Vib 331:5853–5863

    Article  Google Scholar 

  12. Tian Z, Zuo MJ, Wu S (2012) Crack propagation assessment for spur gears using model-based analysis and simulation. J Intell Manuf 23:239–253

    Article  Google Scholar 

  13. Liang X, Zuo MJ (2014) Investigating vibration properties of a planetary gear set with a cracked tooth in a planet gear. Fort Worth, pp 568–575

  14. Li G, Li F, Wang Y, Dong D (2016) Fault diagnosis for a multistage planetary gear set using model-based simulation and experimental investigation. ShockVib 2016:1–19

    Google Scholar 

  15. Ryali L, Talbot D (2022) Dynamic load distribution of planetary gear sets subject to both internal and external excitations. Forsch Ingenieurwes: 86(3):283–294

    Article  Google Scholar 

  16. Chen ZG, Shao YM (2011) Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth. Eng Fail Anal 18:2149–2164

    Article  Google Scholar 

  17. Mohammed OD, Rantatalo M, Aidanpaa J et al (2013) Vibration signal analysis for gear fault diagnosis with various crack progression scenarios. Mech Systsignal Proc 41:17695

    Google Scholar 

  18. Wu SY, Zuo MJ, Parey A (2008) Simulation of spur gear dynamics and estimation of fault growth. J Sound Vib 317:608–624

    Article  Google Scholar 

  19. Mohammed OD, Rantataloet M, Aidanpaa JO (2015) Dynamic modeling of a one-stage spur gear system and vibration-based tooth crack detection analysis. Mech Syst Signal Process 54–55:293–305

    Article  Google Scholar 

  20. Zhou XJ, Shao YM, Lei YG et al (2012) Time-varying meshing stiffness calculation and vibration analysis for a 16DOF dynamic model with linear crack growthin a pinion. J Vib Acoust 134:011011.1–011011.11

    Article  Google Scholar 

  21. Howard I, Jia SX, Wang JD (2001) The dynamic modeling of a spur gear in mesh including friction and a crack. Mech Syst Signal Process 15:831–853

    Article  Google Scholar 

  22. Zhang J, Dhupia JS, Gajanayake CJ (2015) Stator current analysis from electrical machines using resonance residual technique to detect faults in planetary gearboxes. IEEE Trans Ind Electron 62(9):5709–5721. https://doi.org/10.1109/TIE.2015.2410254

    Article  Google Scholar 

  23. Glowacz A, Glowacz W (2018) Vibration-based fault diagnosis of commutator motor. Shock Vib 2018:1–10

    Article  Google Scholar 

  24. Kia SH, Henao H, Capolino GA (2016) Fault Index Statistical Study for Gear Fault Detection Using Stator Current Space Vector Analysis. IEEE Trans on Ind Applicat 52(6):4781–4788. https://doi.org/10.1109/TIA.2016.2600596

    Article  Google Scholar 

  25. Leaman F, Baltes R, Clausen E (2021) Comparative case studies on ring gear fault diagnosis of planetary gearboxes using vibrations and acoustic emissions. Forsch Ingenieurwes 85(2):619–628

    Article  Google Scholar 

  26. Dhamande LS, Chaudhari MB (2018) Compound gear-bearing fault feature extraction using statistical features based on time-frequency method. Measurement 125:63–77

    Article  Google Scholar 

  27. Wang C, Gan M, Zhu CA (2019) A supervised sparsity-based wavelet feature for bearing fault diagnosis. J Intell Manuf 30(1):229–239

    Article  Google Scholar 

  28. Wang C, Gan M, Zhu C (2018) Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory. J Intell Manuf 29(4):937–951

    Article  Google Scholar 

  29. Wu C, Chen T, Jiang R, Ning L, Jiang Z (2017) A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault. J Intell Manuf 28(8):1847–1858

    Article  Google Scholar 

  30. Leite VCMN, d Silva JGB, Veloso GFC, d Silva LEB, Lambert-Torres G, Bonaldi EL, d Oliveira L (2015) Detection of localized bearing faults in induction machines by spectral Kurtosis and envelope analysis of stator current. Ieee Trans Ind Electron 62(3):1855–1865. https://doi.org/10.1109/TIE.2014.2345330

    Article  Google Scholar 

  31. Singh S, Kumar N (2017) Detection of bearing faults in mechanical systems using stator current monitoring. IEEE Trans Ind Informatics 13(3):1341–1349. https://doi.org/10.1109/TII.2016.2641470

    Article  Google Scholar 

  32. Hong L, Dhupia JS (2014) A time domain approach to diagnose gearbox fault based on measured vibration signals. J Sound Vib 333(7):2164–2180. https://doi.org/10.1016/j.jsv.2013.11.033

    Article  Google Scholar 

  33. Fedala S, Remond D, Zegadi R, Felkaoui A (2018) Contribution of angular measurements to intelligent gear faults diagnosis. J Intell Manuf 29(5):1115–1131

    Article  Google Scholar 

  34. Park J, Ha JM, Youn BD, Leem SH, Choi JH, Kim NH (2014) Model-based fault diagnosis of a planetary gear using transmission error. Annu Conf PHM Soc 6(1)

  35. Li G, Li F, Wang Y, Dong D (2016) Fault diagnosis for a multistage planetary gear set using model-based simulation and experimental investigation. Shock and Vibration, 2016.

    Book  Google Scholar 

  36. Li G, Liang X, Li F (2018) Model-based analysis and fault diagnosis of a compound planetary gear set with damaged sun gear. J Mech Sci Technol 32(7):3081–3096

    Article  Google Scholar 

  37. Sang M, Huang K, **ong Y, Han G, Cheng Z (2021) Dynamic modeling and vibration analysis of a cracked 3K-II planetary gear set for fault detection. Mech Sci 12(2):847–861

    Article  Google Scholar 

  38. Mbarek A, Hammami A, Del Rincon AF, Chaari F, Rueda FV, Haddar M (2019) Effect of load and meshing stiffness variation on modal properties of planetary gear. Appl Acoust 147:32–43

    Article  Google Scholar 

  39. Mbarek A, Del Rincon AF, Hammami A, Iglesias M, Chaari F, Viadero F, Haddar M (2018) Comparison of experimental and operational modal analysis on a back to back planetary gear. Mech Mach Theory 124:226–247

    Article  Google Scholar 

  40. Mbarek A, Hammami A, Del Rincon AF, Chaari F, Rueda FV, Haddar M (2017) Effect of gravity of carrier on the dynamic behavior of planetary gears. In: International conference design and modelling of mechanical systems. Springer, Cham, pp 975–983

    Google Scholar 

  41. Dhatt G, Touzot G, Lefrançois E (2005) Méthode des Éléments Finis – Une Présentation. Hermès Science Publications, Paris

    MATH  Google Scholar 

  42. Hammami A, Del Rincon AF, Chaari F, Santamaria MI, Rueda FV, Haddar M (2016) Effects of variable loading conditions on the dynamic behaviour of planetary gear with power recirculation. Measurement 94:306–315

    Article  Google Scholar 

  43. Hammami A, del Rincon AF, Chaari F, Rueda FV, Haddar M (2017) Transfer Path Analysis of Planetary Gear with Mechanical Power Recirculation. In: Signal Processing Applied to Rotating Machinery Diagnostics,(SIGPROMD’2017). Springer, Cham, pp 104–115

    Google Scholar 

Download references

Acknowledgements

“The authors would like to acknowledge Project DPI2017-85390‑P funded by the Spanish Ministry of Economy, Industry, and Competitiveness for supporting this research.” Acknowledgment to the University of Cantabria cooperation project for doctoral training of University of Sfax’s students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Mbarek.

Rights and permissions

Springer Nature oder sein Lizenzgeber hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbarek, A., Fernández Del Rincon, A., Hammami, A. et al. Early damage detection in planetary gear transmission in different operating conditions. Forsch Ingenieurwes 86, 861–874 (2022). https://doi.org/10.1007/s10010-022-00597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-022-00597-9

Navigation