Log in

A general approach for controllable surface structuring of metals via through-mask electrochemical micromachining under isotropic etching mode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Surface structuring has attracted growing interest in the industry due to its potential to improve the macroscopic properties of workpieces. This work investigated the surface structuring of metals by combining thermal oxide film mask and laser lithography with isotropic etching. The metals were thermally oxidized to form a protective oxide film, laser ablation patterned the thermal oxide film, while electrochemical etching operated in the isotropic mode obtained an array of hemispherical cavities. The isotropic etching potential for different metals is taken from the mass transport region of the polarization curve. The effects of thermal oxide film thickness and laser ablation area on the uniformity of the etching holes were studied. The thermal oxidation of TA2 at 350 °C formed a 20-nm-thick oxide film, while an array of 10 μm radius hemispherical microcavities was fabricated on the laser patterning surface via electrochemical etching at 2 V for 1 min. The surface structuring of stainless steel, pure nickel, and tungsten is highly dependent on the ability of the oxide film to avoid electrochemical reactions. The feasibility of combining thermal oxidation and laser lithography with electrochemical etching is of great value for the surface structuring of metallic materials for biomedical and microsystem applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Wu B, Yan D, Lin J, Song J (2023) Wire electrochemical etching of superhydrophobic nickel surfaces with enhanced corrosion protection. Materials 16:7472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yan D, Chen Y, Liu J, Song J (2023) Super-fast fog collector based on self-driven jet of mini fog droplets. Small 19:2301745

    Article  CAS  Google Scholar 

  3. Wu S, Yan D, Chen Y, Song J (2024) Self-driven oil/water separator with super-high separation rate. Nano Energy 119:109066

    Article  CAS  Google Scholar 

  4. Zwahr C, Voisiat B, Welle A, Günther D, Lasagni AF (2018) One-step fabrication of pillar and crater-like structures on titanium using direct laser interference patterning. Adv Eng Mater 20:1800160

    Article  Google Scholar 

  5. Sun A, Chang Y, Liu H (2018) Metal micro-hole formation without recast layer by laser machining and electrochemical machining. Optik 171:694–705

    Article  CAS  Google Scholar 

  6. Leese RJ, Ivanov A (2016) Electrochemical micromachining: an introduction. Adv Mech Eng 8(1):1687814015626860

    Article  Google Scholar 

  7. Landolt D, Chauvy PF, Zinger O (2003) Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments. Electrochim Acta 48:3185–3201

    Article  CAS  Google Scholar 

  8. Schuster R, Kirchner VV, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289:98–101

    Article  CAS  PubMed  Google Scholar 

  9. Kumar A, Das M (2021) Multiphysics simulation and experimental investigation of microtool fabricated by EMM. Mater Manuf Processes 36:1489–1500

    Article  CAS  Google Scholar 

  10. Patel DS, Sharma V, Jain VK, Ramkumar J (2020) Reducing overcut in electrochemical micromachining process by altering the energy of voltage pulse using sinusoidal and triangular waveform. Int J Mach Tools Manuf 151:103526

    Article  Google Scholar 

  11. Spieser A, Ivanov A (2013) Recent developments and research challenges in electrochemical micromachining (µECM). Int J Adv Manuf Technol 69:563–581

    Article  Google Scholar 

  12. Cagnon L, Kirchner V, Kock M, Schuster R, Ertl G, Gmelin WT, Kück H (2003) Electrochemical micromachining of stainless steel by ultrashort voltage pulses. Z Phys Chem 217:299–314

    Article  CAS  Google Scholar 

  13. Sharma V, Patel DS, Jain VK, Ramkumar J (2020) Wire electrochemical micromachining: an overview. Int J Mach Tools Manuf 155:103579

    Article  Google Scholar 

  14. Zhu D, Wang K, Qu NS (2007) Micro wire electrochemical cutting by using in situ fabricated wire electrode. CIRP Ann 56:241–244

    Article  Google Scholar 

  15. Hackert-Oschätzchen M, Meichsner G, Zinecker M, Martin A, Schubert A (2012) Micro machining with continuous electrolytic free jet. Precis Eng 36:612–619

    Article  Google Scholar 

  16. Natsu W, Ikeda T, Kunieda M (2007) Generating complicated surface with electrolyte jet machining. Precis Eng 31:33–39

    Article  Google Scholar 

  17. Sun Y, Ling S, Zhao D, Liu J, Liu Z, Song J (2020) Through-mask electrochemical micromachining of micro pillar arrays on aluminum. Surf Coat Technol 401:126277

    Article  CAS  Google Scholar 

  18. Singh Patel D, Agrawal V, Ramkumar J, Jain VK, Singh G (2020) Micro-texturing on free-form surfaces using flexible-electrode through-mask electrochemical micromachining. J Mater Process Technol 282:116644

    Article  CAS  Google Scholar 

  19. Wang GQ, Zhu D, Li HS (2018) Fabrication of semi-circular micro-groove on titanium alloy surface by through-mask electrochemical micromachining. J Mater Process Technol 258:22–28

    Article  CAS  Google Scholar 

  20. Chauvy PF, Hoffmann P, Landolt D (2001) Electrochemical micromachining of titanium through a laser patterned oxide film. Electrochem Solid State Lett 4(5):C31

    Article  CAS  Google Scholar 

  21. Zhang J, Chen Y, Zhang Y, Wu S, Sun J, Liu X, Song J (2024) Fabrication and energy collection of superhydrophobic ultra-stretchable film. Adv Funct Mater 34(27):2400024

    Article  CAS  Google Scholar 

  22. Reggiani RC, Mazza F, Sivieri E (1979) Electrochemical polishing of titanium in perchloric-methanolic solutions. Mater Chem 4:149–158

    Article  CAS  Google Scholar 

  23. Bard A, Faulkner L (2002) Electrochemical methods: fundamentals and applications

    Google Scholar 

  24. Yi R, Ji J, Zhan Z, Deng H (2022) Mechanism study of electropolishing from the perspective of etching isotropy. J Mater Process Technol 305:117599

    Article  CAS  Google Scholar 

  25. Han W, Fang F (2019) Fundamental aspects and recent developments in electropolishing. Int J Mach Tools Manuf 139:1–23

    Article  CAS  Google Scholar 

  26. Wang F, Zhang X, Deng H (2019) A comprehensive study on electrochemical polishing of tungsten. Appl Surf Sci 475:587–597

    Article  CAS  Google Scholar 

  27. Macdonald DD, Urquidi-Macdonald M (1990) Theory of steady-state passive films. J Electrochem Soc 137:2395

    Article  CAS  Google Scholar 

  28. Ittah R, Amsellem E, Itzhak D (2014) Pitting corrosion evaluation of titanium in NH4Br solutions by electrochemical methods. Int J Electrochem Sci 9:633–643

    Article  Google Scholar 

  29. He Y, Lu W, Gan W, Zhao J, Zuo D (2016) Polarization of Ti6Al4V alloy in NaBr electrolyte and surface fractal analysis. Proc Inst Mech Eng Part L J Mater Design Appl 232:602–609

    Google Scholar 

  30. Yanagishita T, Imaizumi M, Kondo T, Masuda H (2017) Formation of porous Al particles by anisotropic anodic etching. Electrochem Commun 78:26–28

    Article  CAS  Google Scholar 

  31. Chen P, Chen Y, Lin H, Li H, Li X (2021) An efficient electrochemical polishing of tungsten with combined forced and natural convections. Int J Adv Manuf Technol 117:2819–2834

    Article  Google Scholar 

  32. Liu W, Ao S, Li Y, Liu Z, Zhang H, Manladan SM, Luo Z, Wang Z (2017) Effect of anodic behavior on electrochemical machining of TB6 titanium alloy. Electrochim Acta 233:190–200

    Article  CAS  Google Scholar 

  33. Aniołek K (2017) The influence of thermal oxidation parameters on the growth of oxide layers on titanium. Vacuum 144:94–100

    Article  Google Scholar 

  34. Pérez del Pino A, Fernández-Pradas JM, Serra P, Morenza JL (2004) Coloring of titanium through laser oxidation: comparative study with anodizing. Surf Coat Technol 187:106–112

    Article  Google Scholar 

  35. Madore C, Piotrowski O, Landolt D (1999) Through-mask electrochemical micromachining of titanium. J Electrochem Soc 146:2526–2532

    Article  CAS  Google Scholar 

  36. Zinger O, Chauvy PF, Landolt D (2003) Scale-resolved electrochemical surface structuring of titanium for biological applications. J Electrochem Society 150(11):B495

    Article  CAS  Google Scholar 

  37. Yi R, Zhang Y, Zhang X, Fang F, Deng H (2020) A generic approach of polishing metals via isotropic electrochemical etching. Int J Mach Tools Manuf 150:103517

    Article  Google Scholar 

  38. Madore C, Landolt D (1997) Electrochemical micromachining of controlled topographies on titanium for biological applications. J Micromech Microeng 7:270–275

    Article  CAS  Google Scholar 

  39. Chauvy PF, Hoffmann P, Landolt D (2003) Applications of laser lithography on oxide film to titanium micromachining. Appl Surf Sci 208–209:165–170

    Article  Google Scholar 

  40. Lu X, Leng Y (2005) Electrochemical micromachining of titanium surfaces for biomedical applications. J Mater Process Technol 169:173–178

    Article  CAS  Google Scholar 

  41. Yu Y, Shironita S, Souma K, Umeda M (2018) Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution. Heliyon 4:e00958

    Article  PubMed  PubMed Central  Google Scholar 

  42. Toušek J (1977) Electropolishing of metals in alcoholic solution of sulphuric acid. Electrochim Acta 22:47–50

    Article  Google Scholar 

  43. Han W, Fang FZ (2020) Investigation of electropolishing characteristics of tungsten in eco-friendly sodium hydroxide aqueous solution. Adv Manuf 8:265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan W, Li L-H, Lee W-B, Chan C-Y (2018) Fabrication of microlens array and its application: a review. Chin J Mech Eng 31(1):1–9

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of SUSTech Core Research Facilities.

Funding

This project is supported by the National Natural Science Foundation of China (52035009 and 52005243), the Science and Technology Innovation Committee of Shenzhen Municipality (JCYJ20200109141003910, JCYJ20210324120402007, and KQTD20170810110250357), and the Doctoral Research Initiation Fund Project of University of South China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Yi or Hui Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, R., Khan, M.A. & Deng, H. A general approach for controllable surface structuring of metals via through-mask electrochemical micromachining under isotropic etching mode. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-06004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-06004-3

Keywords

Navigation