Log in

Performance of electrochemical oxidation of Disperse Yellow 3 dye over BDD anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical oxidation is a promising approach for develo** viable alternatives to treat polluted waters and effluents from various sources, including industrial and domestic wastewater. Since azo dyes represent an important part of the dyes used in the textile industries and because they are toxic and difficult to be treated by conventional methods, in this study, we investigate the electrodegradation of the azo dye Disperse Yellow 3 (DY3) on a boron-doped diamond (BDD) anode. Byproducts are monitored by mass spectrometry and the electrogenerated hydroxyl and sulfate free radicals are analyzed by electron paramagnetic resonance spectroscopy (EPR). Hydroxyl radical formation during the electrolysis in nitrate medium is identified by EPR technique whereas in the sulfate medium, sulfate radical is identified in addition to hydroxyl radicals. The use of different electrolysis conditions allows confirming the ability of the electrochemical method to degrade the azo dye using BDD electrodes. The catalytic effectiveness for the DY3 electrodegradation in the presence of sulfate is around 8 times more efficient than in the presence of pure nitrate solution, which is attributed to the sulfate radical formation that largely influences the BDD electroactivity, accelerating degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zarei E, Ojani R (2017) Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J Solid State Electrochem 21:305–336

    Article  CAS  Google Scholar 

  2. Abdelhay A, Jum’h I, Albsoul A, et al (2021) Performance of electrochemical oxidation over BDD anode for the treatment of different industrial dye-containing wastewater effluents. Water Reuse 11:110–121

    CAS  Google Scholar 

  3. Prabhakar Y, Gupta A, Kaushik A (2019) Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: process optimization, short acclimatization and reusability analysis in batch cycles. Process Saf Environ Prot 131:116–126

    Article  CAS  Google Scholar 

  4. Lee HI, Kim JH, Lee HS et al (2010) Purification of toxic compounds in water and treatment of polymeric materials. In: Anpo M, Kamat P (eds) Environmentally Benign Photocatalysts. Nanostructure Science and Technology, 1st edn. Springer, New York

    Google Scholar 

  5. Wang R, Lu Y, Song S et al (2022) Industrial source discharge estimation for pharmaceutical and personal care products in China. J Clean Prod 381(135129):1–9

    Google Scholar 

  6. Vilar VJP, Malato S, Dionysiou DD (2015) Advanced oxidation technologies: advances and challenges in Iberoamerican countries. Environ Sci Pollut Res 22:759–761

    Article  Google Scholar 

  7. Karci A (2014) Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere 99:1–18

    Article  CAS  PubMed  Google Scholar 

  8. Dasgupta J, Sikder J, Chakraborty S et al (2015) Remediation of textile effluents by membrane-based treatment techniques: a state of the art review. J Environ Manag 147:55–72

    Article  CAS  Google Scholar 

  9. Marcelino RBP, Queiroz MTA, Amorim CC et al (2014) Solar energy for wastewater treatment: review of international technologies and their applicability in Brazil. Environ Sci Pollut Res 22:762–773

    Article  Google Scholar 

  10. Robinson T, McMullan G, Marchant R et al (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  PubMed  Google Scholar 

  11. Lopez C, Mielgo I, Moreira MT et al (2002) Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourization J Biotechnol 99:249–257

    CAS  Google Scholar 

  12. Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    CAS  PubMed  Google Scholar 

  13. Li K, Beaumont J (2012) Evidence on the carcinogenicity of CI Disperse Yellow 3. Reproductive and Cancer Hazard Assessment Branch Office of Environmental Health Hazard Assessment (OEHHA). California Environ Protect Agency 5-8. https://oehha.ca.gov/media/downloads/proposition-65/chemicals/081012ciyhid.pdf

  14. Patterson D, Sheldon RP (1960) The solubilities and heats of solution of disperse dyes in water. J Soc Dyers Colour 76:178–181

    Article  CAS  Google Scholar 

  15. Camacho-Muñoz D, Fevers A-S, Pestana CJ et al (2020) Degradation of microcystin-LR and cylindrospermopsin by continuous flow UV-A photocatalysis over immobilised TiO2. J Environ Manag 276(111368):1–8

    Google Scholar 

  16. Medel A, González MC, Treviño-Reséndez J et al (2023) Synergistic role of active chlorine species and hydroxyl radicals during disinfection and mineralization of carwash wastewater. J Solid State Electrochem 27:2881–2891

    Article  CAS  Google Scholar 

  17. Xu HX, Sun X, Yang H et al (2024) Research progress of electrolytic treatment technology for organic wastewater. Article in press, J Solid State Electrochem

    Book  Google Scholar 

  18. Santos MC, Antonin VS, Souza FM et al (2022) Decontamination of wastewater containing contaminants of emerging concern by electrooxidation and Fenton-based processes – a review on the relevance of materials and methods. Chemosphere 307(135763):1–26

    Google Scholar 

  19. Labiadh L, Barbucci A, Carpanese MP et al (2017) Direct and indirect electrochemical oxidation of Indigo Carmine using PbO2 and TiRuSnO2. J Solid State Electrochem 21:2167–2175

    Article  CAS  Google Scholar 

  20. Regalado-Méndez A, Zavaleta-Avendaño J, Peralta-Reyes E et al (2023) Convex optimization for maximizing the degradation efficiency of chloroquine in a flow-by electrochemical reactor. J Solid State Electrochem 27:3163–3176

    Article  Google Scholar 

  21. Cornejo OM, Murrieta MF, Castañeda LF et al (2021) Electrochemical reactors equipped with BDD electrodes: geometrical aspects and applications in water treatment. Curr Opin Solid State Mater Sci 25(100935):1–6

    Google Scholar 

  22. Labiadh L, Barbucci A, Cerisola G et al (2015) Role of anode material on the electrochemical oxidation of methyl orange. J Solid State Electrochem 19:3177–3183

    Article  CAS  Google Scholar 

  23. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review Appl Catal B 166–167:603–643

    Article  Google Scholar 

  24. Ning L, Wang Y, Cheng X, Dai H, Yan B, Chen G, Hou L, Wang S (2022) Influences and mechanisms of phosphate ions onto persulfate activation and organic degradation in water treatment: a review. Water Res 222(118896):1–13

    Google Scholar 

  25. Zhang C, Liu L, Wang J et al (2013) Electrochemical degradation of ethidium bromide using boron-doped diamond electrode. Sep Purif Technol 107:91–101

    Article  CAS  Google Scholar 

  26. Pignatello JJ, Oliveros E, Mackay A (2007) Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit Rev Env Sci Technol 36:1–84

    Article  Google Scholar 

  27. Bagastyo AY, Batstone DJ, Rabaey K et al (2013) Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. Water Res 47:242–250

    Article  CAS  PubMed  Google Scholar 

  28. Marselli B, Garcia-Gomez J, Michaud P-A et al (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83

    Article  CAS  Google Scholar 

  29. Davies MJ (2016) Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trap** and related methods. Methods 109:21–30

    Article  CAS  PubMed  Google Scholar 

  30. Shen JH, Horng JJ, Wang YS et al (2017) The use of reactive index of hydroxyl radicals to investigate the degradation of acid orange 7 by Fenton process. Chemosphere 182:364–372

    Article  CAS  PubMed  Google Scholar 

  31. Chai L, Yang J, Liao F et al (2017) Kinetics and molecular mechanism of arsenite photochemical oxidation based on sulfate radical. Mol Catal 438:113–120

    Article  CAS  Google Scholar 

  32. Velasco LF, Maurino V, Laurenti E et al (2013) Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Appl Catal A-Gen 452:1–8

    Article  CAS  Google Scholar 

  33. Santhanam M, Selvaraj R, Annamalai S et al (2017) Combined electrochemical, sunlight-induced oxidation and biological process for the treatment of chloride containing textile effluent. Chemosphere 186:1026–1032

    Article  CAS  PubMed  Google Scholar 

  34. Aravind P, Subramanyan V, Ferro S et al (2016) Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. Water Res 93:230–241

    Article  CAS  PubMed  Google Scholar 

  35. Sundarapandiyan S, Renitha TS, Sridevi J et al (2014) Mechanistic insight into active chlorine species mediated electrochemical degradation of recalcitrant phenolic polymers. RSC Adv 4:59821–59830

    Article  CAS  Google Scholar 

  36. Ghanbari F, Moradi M (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J 310:41–62

    Article  CAS  Google Scholar 

  37. Gherardini L, Michaud PA, Panizza M et al (2001) Electrochemical oxidation of 4-chlorophenol for wastewater treatment – definition of normalized current efficiency (phi). J Electrochem Soc 148:D78–D82

    Article  CAS  Google Scholar 

  38. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  39. Oguz E, Keskinler B, Çelik Z (2005) Ozonation of aqueous Bomaplex Red CR-L dye in a semi-batch reactor. Dyes Pigm 64:101–108

    Article  CAS  Google Scholar 

  40. Saien J, Moradi V, Soleymani A-R (2012) Investigation of a jet mixing photo-reactor device for rapid dye discoloration and aromatic degradation via UV/H2O2 process. Chem Eng J 183:135–140

    Article  CAS  Google Scholar 

  41. Tang WZ (2003) Physicochemical treatment of hazardous wastes. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  42. Wu W, Huang Z-H, Lim T-T (2014) Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl Catal A-Gen 480:58–78

    Article  CAS  Google Scholar 

  43. Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15

    Article  CAS  Google Scholar 

  44. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    Article  CAS  Google Scholar 

  45. Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ Int 40:212–229

    Article  PubMed  Google Scholar 

  46. Long X, Huang R, Li Y, Wang J, Zhang M, Zhang IY (2023) Understanding the electro-cocatalytic peroxymonosulfate-based systems with BDD versus DSA anodes: radical versus nonradical dominated degradation mechanisms. Sep Purif Technol 309(123120):1–12

    Google Scholar 

  47. Cai J, Niu T, Shi P et al (2019) Boron-doped diamond for hydroxyl radical and sulfate radical anion electrogeneration, transformation, and voltage-free sustainable oxidation. Small 1900153:1–9

    Google Scholar 

  48. Conway BE, Bockris JO, Yeager E, Khan SUM et al (1981) Comprehensive treatise of electrochemistry, 1st edn. Plenum Press, New York

    Google Scholar 

  49. Davis J, Baygents JC, Farrell J (2014) Understanding persulfate production at boron doped diamond film anodes. Electrochim Acta 150:68–74

    Article  CAS  Google Scholar 

  50. Rajendran HK, Fakrudeen MAD, Chandrasekar R et al (2022) A comprehensive review on analytical and equation derived multivariate chemometrics for the accurate interpretation of the degradation of aqueous contaminants. Environ Technol Inno 28(102827):1–15

    Google Scholar 

  51. Bella F, Imperiyka M, Ahmad A (2014) Photochemically produced quasi-linear copolymers for stable and efficient electrolytes in dye-sensitized solar cells. J Photochem Photobiol A Chem 289:73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Luis A. B. de Moraes is grateful for the MS results.

Funding

The authors gratefully acknowledge the financial support provided by CNPq ( A. Kinoshita 306096/2023-4, P. Olivi 307983/2013-7, Oswaldo Baffa 305827/2023-5 and CEPID-NEUROMAT 2013/07699-0), FAPESP and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Olivi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, C.M., Kinoshita, Â., Baffa, O. et al. Performance of electrochemical oxidation of Disperse Yellow 3 dye over BDD anodes. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05994-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05994-4

Keywords

Navigation