Log in

Enhancing dye-sensitized solar cell performance; optimization of quaternary counterion-based gel polymer electrolyte without changing additives or net-ion composition

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of novel gel polymer electrolytes (GPEs) was developed for quasi-solid-state dye-sensitized solar cells (DSSCs), to enhance their performance via mixed counterion effect. Here, LiI, CsI, tetrahexylammonium iodide (Hex4NI), and 1-methyl-3-propylimidazolium iodide (MPII) were used as iodide salts for the preparation of this new GPE. The electrolyte series was investigated by varying the molar fractions of LiI and CsI, kee** the molar fractions of Hex4NI and MPII constant. The molar composition of the iodide salts in electrolytes is MPII0.25(Hex4NI)0.8CsI(2-x)LiIx, where x is the variable. The temperature dependence of conductivity showed Vogel-Tammann-Fulcher behavior. The sample with x = 0.72, where LiI to CsI to Hex4NI to MPII molar ratio is 72:48:80:25, which gave 8.42 mS cm−1 at 30 °C, displayed the maximum conductivity at all the temperatures. The dependence of the complex AC conductivity on frequency is examined in detail to study the impacts of dielectric polarization effects of the GPEs. Quasi-solid-state DSSCs were constructed by utilizing six-layered TiO2 photoelectrodes, Pt counter electrode, and the novel GPE series. The three-salt electrolytes, containing LiI only and CsI only, containing DSSC showed efficiencies of 5.72% and 3.53% respectively. The four-salt system, which is composed of LiI to CsI to Hex4NI to MPII with a molar ratio of 96:24:80:25, demonstrated the highest solar cell efficiency of 7.42%, due to the collective contribution of Hex4N+, MPI+, Cs+, and Li+ ions in improving the charge transport in the electrolyte system. This study shows that DSSC performance can greatly be improved by optimizing counterion ratios without changing total ions in the electrolyte.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bosu I, Mahmoud H, Ookawara S, Hassan H (2023) Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: a comprehensive review. Sol Energy 259:188–228

    Article  Google Scholar 

  2. Fikri E, Sulistiawan IA, Riyanto A, Saputra AE (2023) Neutralization of acidity (pH) and reduction of total suspended solids (TSS) by solar-powered electrocoagulation system. Civ Eng J 9(5):1160–1172

    Google Scholar 

  3. Prasetyo SD, Budiana EP, Prabowo AR, Arifin Z (2023) modeling finned thermal collector construction nanofluid-based Al2O3 to enhance photovoltaic performance. Civ Eng J 9(12):2989–3007

    Google Scholar 

  4. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  CAS  Google Scholar 

  5. Teo LP, Buraidah MH, Arof AK (2020) Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review. Ionics 26:4215–4238

    Article  CAS  Google Scholar 

  6. Raut P, Kishnani V, Mondal K, Gupta A, Jana SC (2022) A review on gel polymer electrolytes for dye-sensitized solar cells. Micromachines 13(5):680

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bella F, Gerbaldi C, Barolo C, Grätzel M (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44(11):3431–3473

    Article  CAS  PubMed  Google Scholar 

  8. Yusuf SNF, Arof AK (2020) Polymer electrolyte application in electrochemical devices. In: Winie T, Arof AK, Thomas S (eds) Polymer electrolytes: characterization techniques and energy applications. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 137–186

    Chapter  Google Scholar 

  9. Önen T, Karakuş MÖ, Coşkun R, Çetin H (2019) Reaching stability at DSSCs with new type gel electrolytes. J Photochem Photobiol, A 385

    Article  Google Scholar 

  10. Sharma K, Sharma V, Sharma SS (2018) Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res Lett 13(1):1–46

    Article  Google Scholar 

  11. Yusuf SNF, Yusof SZ, Kufian MZ, Teo LP (2019) Preparation and electrical characterization of polymer electrolytes: a review. Mater Today Proc 17:446–458

    Article  CAS  Google Scholar 

  12. Abrol SA, Bhargava C, Sharma PK (2020) Electrical properties enhancement of liquid and polymer gel based electrolytes used for DSSC applications. Mater Res Express 7(10):106202

    CAS  Google Scholar 

  13. Kim DW, Jeong YB, Kim SH, Lee DY, Song JS (2005) Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte. J Power Sources 149:112–116

    Article  CAS  Google Scholar 

  14. Chalkias DA, Verykokkos NE, Kollia E, Petala A, Kostopoulos V, Papanicolaou GC (2021) High-efficiency quasi-solid state dye-sensitized solar cells using a polymer blend electrolyte with “polymer-in-salt” conduction characteristics. Sol Energy 222:35–47

    Article  CAS  Google Scholar 

  15. Sundararajan V, Farhana NK, Ng HM, Ramesh S, Ramesh K (2019) Efficiency enhancement study on addition of 1-hexyl-3-methylimidazolium iodide ionic liquid to the poly (methyl methacrylate-co-methacrylic acid) electrolyte system as applied in dye-sensitized solar cells. J Phys Chem Solids 129:252–260

    Article  CAS  Google Scholar 

  16. Yusuf SNF, Azzahari AD, Selvanathan V, Yahya R, Careem MA, Arof AK (2017) Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system. Carbohydr Polym 157:938–944

    Article  CAS  PubMed  Google Scholar 

  17. Subramania A, Vijayakumar E, Sivasankar N, Sathiya Priya AR, Kim KJ (2013) Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/triiodide redox electrolyte on the photovoltaic performance of DSSC. Ionics 19:1649–1653

    Article  CAS  Google Scholar 

  18. Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD (2019) Progress on electrolytes development in dye-sensitized solar cells. Materials 12(12):1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ling CK, Aung MM, Abdullah LC, Lim HN, Uyama H (2020) A short review of iodide salt usage and properties in dye sensitized solar cell application: single vs binary salt system. Sol Energy 206:1033–1038

    Article  CAS  Google Scholar 

  20. Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustain Energy Rev 68:234–246

    Article  CAS  Google Scholar 

  21. **n C, Wen K, Guan S, Xue C, Wu X, Li L, Nan CW (2022) A cross-linked poly (ethylene oxide)-based electrolyte for all-solid-state lithium metal batteries with long cycling stability. Front Mater 9:211

    Article  Google Scholar 

  22. Teo LP, Buraidah MH, Arof AK (2021) Development on solid polymer electrolytes for electrochemical devices. Molecules 26(21):6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly (ethylene oxide) on ionic conductivity and electrochemical properties of poly (vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283–291

    Article  CAS  Google Scholar 

  24. Bella F, Galliano S, Falco M, Viscardi G, Barolo C, Grätzel M, Gerbaldi C (2016) Unveiling iodine-based electrolytes chemistry in aqueous dye-sensitized solar cells. Chem Sci 7(8):4880–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(7):1702184

    Article  Google Scholar 

  26. Bandara TMWJ, DeSilva LA, Ratnasekera JL, Hettiarachchi KH, Wijerathna AP, Thakurdesai, & Mellander, B. E. (2019) High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles. Renew Sustain Energy Rev 103:282–290

    Article  CAS  Google Scholar 

  27. Bandara TMWJ, Senavirathna SLN, Wickramasinghe HMN, Vignarooban K, De Silva LA, Dissanayake MAKL, Mellander BE (2020) Binary counter ion effects and dielectric behavior of iodide ion conducting gel-polymer electrolytes for high-efficiency quasi-solid-state solar cells. Phys Chem Chem Phys 22(22):12532–12543

    Article  CAS  PubMed  Google Scholar 

  28. Wickramasinghe HMN, Karunathilaka NGA, Gnanarathne DMT, DeSilva LA, Bandara KMSP, Bandara TMWJ (2023) Investigation of the mixed cation effect and the irradiance level dependence on the efficiency of dye-sensitized solar cells. Ionics 30(2):1151–1165

    Article  Google Scholar 

  29. Nishshanke GBMMM, Arof AK, Bandara TMWJ (2020) Review on mixed cation effect in gel polymer electrolytes for quasi solid-state dye-sensitized solar cells. Ionics 26:3685–3704

    Article  CAS  Google Scholar 

  30. Bandara TMWJ, Fernando HDNS, Furlani M, Albinsson I, Dissanayake MAKL, Ratnasekera JL, Mellander BE (2016) Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys Chem Chem Phys 18(16):10873–10881

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Hagfeldt A, **ao XR, Lindquist SE (1998) Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol Energy Mater Sol Cells 55(3):267–281

    Article  CAS  Google Scholar 

  32. Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Furlani M, Albinsson I, Mellander BE (2013) Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quaternary ammonium iodides. Electrochim Acta 109:609–616

    Article  CAS  Google Scholar 

  33. Shi Y, Wang Y, Zhang M, Dong X (2011) Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium. Phys Chem Chem Phys 13(32):14590–14597

    Article  CAS  PubMed  Google Scholar 

  34. Kambe S, Nakade S, Kitamura T, Wada Y, Yanagida S (2002) Influence of the electrolytes on electron transport in mesoporous TiO2− electrolyte systems. J Phys Chem B 106(11):2967–2972

    Article  CAS  Google Scholar 

  35. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci-Adv Mater Dev 3(1):1–17

    Google Scholar 

  36. Li Z, Fu J, Zhou X, Gui S, Wei L, Yang H, Guo X (2023) Ionic conduction in polymer-based solid electrolytes. Adv Sci 10(10):2201718

    Article  CAS  Google Scholar 

  37. Seki S, Susan MABH, Kaneko T, Tokuda H, Noda A, Watanabe M (2005) Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. J Phys Chem B 109(9):3886–3892

    Article  CAS  PubMed  Google Scholar 

  38. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3(5):597–608

    Article  CAS  Google Scholar 

  39. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9(12):7644–7659

    Article  Google Scholar 

  40. Shukla N, Thakur AK, Shukla A, Chatterjee R (2014) Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films. J Mater Sci Mater Electron 25:2759–2770

    Article  CAS  Google Scholar 

  41. Dhatarwal P, Sengwa RJ (2020) Dielectric polarization and relaxation processes of the lithium-ion conducting PEO/PVDF blend matrix-based electrolytes: effect of TiO2 nanofiller. SN Appl Sci 2(5):833

    Article  CAS  Google Scholar 

  42. Serghei A, Tress M, Sangoro JR, Kremer F (2009) Electrode polarization and charge transport at solid interfaces. Phys Rev B 80(18)

    Article  Google Scholar 

  43. Bandara TMWJ, Jayasundara WJMJSR, Fernado HDNS, Dissanayake MAKL, De Silva LAA, Fernando PSL, Mellander BE (2014) Efficiency enhancement of dye-sensitized solar cells with PAN: CsI: LiI quasi-solid state (gel) electrolytes. J Appl Electrochem 44:917–926

    Article  CAS  Google Scholar 

  44. Lee SF, Jimenez-Relinque E, Martinez I, Castellote M (2023) Effects of Mott-Schottky frequency selection and other controlling factors on flat-band potential and band-edge position determination of TiO2. Catalysts 13(6):1000–1000. https://doi.org/10.3390/catal13061000

    Article  CAS  Google Scholar 

  45. Ming NH, Ramesh S, Ramesh K (2016) The potential of incorporation of binary salts and ionic liquid in P (VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances. Sci Rep 6(1):1–13

    Article  Google Scholar 

  46. Bandara TMWJ, Svensson T, Dissanayake MAKL, Furlani M, Jayasundara WJMJSR, Mellander BE (2012) Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells. Energy Procedia 14:1607–1612

    Article  Google Scholar 

  47. Bandara TMWJ, Fernando HDNS, Furlani M, Albinsson I, Dissanayake MAKL, Ratnasekera JL, Mellander BE (2017) Dependence of solar cell performance on the nature of alkaline counterion in gel polymer electrolytes containing binary iodides. J Solid State Electrochem 21:1571–1578

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical support from Mr. M.N.D. Ariyarathne.

Funding

University of Peradeniya, Grant 2023-346 and Grant PGIS/2020/05, Thennakoon Mudiyanselage Wijendra Jayalath Bandara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. W. J. Bandara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A quaternary I salt system is investigated to find highly performing electrolytes for DSSCs.

• Small counterion-based I salts reduce open-circuit voltage and enhance short-circuit current density.

• Bulky counterion-based I salts enhance open-circuit voltage and decrease short-circuit current density.

• The use of a mixture of small and bulky cations in electrolytes enhances the solar cell efficiency.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandara, T.M.W.J., Bandara, K.M.S.P., Wickramasinghe, H.M.N. et al. Enhancing dye-sensitized solar cell performance; optimization of quaternary counterion-based gel polymer electrolyte without changing additives or net-ion composition. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05993-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05993-5

Keywords

Navigation