Log in

Electrochemical study of screen-printed electrodes modified with electropolymerized polyaniline films grafted with low mass ratio of graphene oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Homemade screen-printed electrodes (SPEs) were produced using conductive inks with graphite and alkyd resin and were modified with electropolymerized films of polyaniline (PAni) grafted with 2.5 and 5.0 (m:m) of graphene oxide (GO) obtained by the chemical oxidation of graphite. The SPEs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The CV results showed similar redox behavior for all SPE, characteristic of PAni films in an acidic medium (0.5 mol L−1 H2SO4). However, the EIS results showed a decrease in the charge-transfer resistance (Rct), from 1064 Ω for SPE/PAni to 364 Ω for SPE/PAni-2.5%GO (about 3 times) and to 113 Ω for SPE/PAni-5%GO (about 10 times) compared to the unmodified counterpart SPE/PAni. Additionally, an increase in the constant phase element (CPE2) value was also observed, from 459 µS sα cm−2 for SPE/PAni to 838 µS sα cm−2 for SPE/PAni-2.5%GO and to 1560 µS sα cm−2 for SPE/PAni-5%GO, indicating lower ion transport for the SPEs modified with the PAni-GO hybrids. This method to produce a homemade SPE modified with the PAni-GO hybrid with improved electrochemical behavior and ionic conductivity is a simple, low-cost, scalable, and interesting alternative for future applications in sensors or charge-storage electrochemical devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okhay O, Tkach A (2022) Polyaniline-graphene electrodes prepared by electropolymerization for high-performance capacitive electrodes: A brief review. Batter-Basel 8:191. https://doi.org/10.3390/batteries8100191

    Article  CAS  Google Scholar 

  2. Kumar M, Supreet S, Sharma S et al (2024) Composite nanoarchitectonics with reduced-graphene oxide and polyaniline for a highly responsive and selective sensing of methanol vapors. Mater Chem Phys 312:128626. https://doi.org/10.1016/j.matchemphys.2023.128626

    Article  CAS  Google Scholar 

  3. Rawal S, Mandal UK, Kumar A et al (2021) Enhanced electrochemical performance of hierarchical porous carbon/polyaniline composite for supercapacitor applications. Nano Express 2:010013. https://doi.org/10.1088/2632-959X/abdd88

    Article  Google Scholar 

  4. de Araujo GM, Codognoto L, Simoes FR (2020) Self-assembled electrodes based on polyaniline grafted with reduced graphene oxide and polystyrene sulfonate. J Solid State Electrochem 24:1857–1866. https://doi.org/10.1007/s10008-020-04517-1

    Article  CAS  Google Scholar 

  5. Li X, Zhong Q, Zhang X et al (2015) In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance. Thin Solid Films 584:348–352. https://doi.org/10.1016/j.tsf.2015.01.055

    Article  CAS  Google Scholar 

  6. Petrovski A, Paunovic P, Avolio R et al (2017) Synthesis and characterization of nanocomposites based on PANI and carbon nanostructures prepared by electropolymerization. Mater Chem Phys 185:83–90. https://doi.org/10.1016/j.matchemphys.2016.10.008

    Article  CAS  Google Scholar 

  7. Sayah A, Habelhames F, Bahloul A et al (2018) Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J Electroanal Chem 818:26–34. https://doi.org/10.1016/j.jelechem.2018.04.016

    Article  CAS  Google Scholar 

  8. Liu S, Liu L, Guo H et al (2019) Electrochemical polymerization of polyaniline-reduced graphene oxide composite coating on 5083 Al alloy: Role of reduced graphene oxide. Electrochem Commun 98:110–114. https://doi.org/10.1016/j.elecom.2018.12.004

    Article  CAS  Google Scholar 

  9. Zhang Q, Li Y, Feng Y, Feng W (2013) Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim Acta 90:95–100. https://doi.org/10.1016/j.electacta.2012.11.035

    Article  CAS  Google Scholar 

  10. Marakova N, Boeva ZA, Humpolicek P et al (2019) Electrochemically prepared composites of graphene oxide and conducting polymers: Cytocompatibility of cardiomyocytes and neural progenitors. Mater Sci Eng C-Mater Biol Appl 105:110029. https://doi.org/10.1016/j.msec.2019.110029

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: Preparation, properties and applications. J Mater Chem A 2:4491–4509. https://doi.org/10.1039/c3ta13462h

    Article  CAS  Google Scholar 

  12. Luyen TT, Hoang VT, Hue TMD et al (2021) Electrosynthesis of electrochemically reduced graphene oxide/polyaniline nanowire/silver nanoflower nanocomposite for development of a highly sensitive electrochemical DNA sensor. RSC Adv 11:19470–19481. https://doi.org/10.1039/d1ra01301g

    Article  CAS  Google Scholar 

  13. Chiang Y-J, Chang L-Y, Cheng C-Y et al (2022) Designing highly transparent electropolymerized PANI/rGO nanocomposite as a Pt-free electrocatalytic layer in photoelectrochromic device for self-powered green building. Renew Energy 199:103–111. https://doi.org/10.1016/j.renene.2022.08.089

    Article  CAS  Google Scholar 

  14. Zhou F, Han S, Qian Q, Zhu Y (2019) 3D printing of free-standing and flexible nitrogen doped graphene/polyaniline electrode for electrochemical energy storage. Chem Phys Lett 728:6–13. https://doi.org/10.1016/j.cplett.2019.04.062

    Article  CAS  Google Scholar 

  15. Jafari S, Dehghani M, Nasirizadeh N et al (2021) Electrochemical detection of bupropion drug using nanocomposite of molecularly imprinted polyaniline/Au nanoparticles/graphene oxide. Bull Mater Sci 44:56. https://doi.org/10.1007/s12034-020-02348-4

    Article  CAS  Google Scholar 

  16. Liu Z, Zhao Z, Xu A et al (2021) Facile preparation of graphene/polyaniline composite hydrogel film by electrodeposition for binder-free all-solid-state supercapacitor. J Alloys Compd 875:159931. https://doi.org/10.1016/j.jallcom.2021.159931

    Article  CAS  Google Scholar 

  17. Yarkaeva Y, Maistrenko V, Dymova D et al (2022) Polyaniline and poly(2-methoxyaniline) based molecular imprinted polymer sensors for amoxicillin voltammetric determination. Electrochim Acta 433:141222. https://doi.org/10.1016/j.electacta.2022.141222

    Article  CAS  Google Scholar 

  18. Wei H, Zhu J, Wu S et al (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831. https://doi.org/10.1016/j.polymer.2013.01.051

    Article  CAS  Google Scholar 

  19. Rohani Moghadam M, Salehi L, Jafari S et al (2019) Voltammetric sensing of oxacillin by using a screen-printed electrode modified with molecularly imprinted polyaniline, gold nanourchins and graphene oxide. Microchim Acta 186:798. https://doi.org/10.1007/s00604-019-3981-9

    Article  CAS  Google Scholar 

  20. de Araújo GM, Cardoso MA, Codognoto L, Simões FR (2023) Screen-printed electrodes based on conductive inks of polyaniline/graphene hybrids and their application to progesterone detection. ECS Adv 2:1–8

    Article  Google Scholar 

  21. Pradel-Filho LA, Andreotti IAA, Carvalho JHS et al (2020) Glass varnish-based carbon conductive ink: A new way to produce disposable electrochemical sensors. Sens Actuators B-Chem 305:127433. https://doi.org/10.1016/j.snb.2019.127433

    Article  CAS  Google Scholar 

  22. Carvalho JHS, Stefano JS, Brazaca LC, Janegitz BC (2023) New conductive ink based on carbon nanotubes and glass varnish for the construction of a disposable electrochemical sensor. J Electroanal Chem 937:117428. https://doi.org/10.1016/j.jelechem.2023.117428

    Article  CAS  Google Scholar 

  23. Gupta V, Miura N (2006) Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J Power Sources 157:616–620

    Article  CAS  Google Scholar 

  24. Asadian E, Shahrokhian S, Zad AI, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sens Actuators B-Chem 196:582–588. https://doi.org/10.1016/j.snb.2014.02.049

    Article  CAS  Google Scholar 

  25. Ossonon BD, Belanger D (2017) Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. Rsc Adv 7:27224–27234. https://doi.org/10.1039/c6ra28311j

    Article  CAS  Google Scholar 

  26. Khanra P, Kuila T, Bae SH et al (2012) Electrochemically exfoliated graphene using 9-anthracene carboxylic acid for supercapacitor application. J Mater Chem 22:24403–24410. https://doi.org/10.1039/c2jm34838a

    Article  CAS  Google Scholar 

  27. He D, Peng Z, Gong W et al (2015) Mechanism of a green graphene oxide reduction with reusable potassium carbonate. Rsc Adv 5:11966–11972. https://doi.org/10.1039/c4ra14511a

    Article  CAS  Google Scholar 

  28. Bera M, Chandravati GP, Maji PK (2018) Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J Nanosci Nanotechnol 18:902–912. https://doi.org/10.1166/jnn.2018.14306

    Article  CAS  PubMed  Google Scholar 

  29. Gao R, Hu N, Yang Z et al (2013) Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties. Nanoscale Res Lett 8:1–8. https://doi.org/10.1186/1556-276X-8-32

    Article  CAS  Google Scholar 

  30. dos Santos Pereira AP, Prado da Silva MH, Lima Junior EP et al (2017) Processing and characterization of PET composites reinforced with geopolymer concrete waste. Mater Res-Ibero-Am J Mater 20:411–420. https://doi.org/10.1590/1980-5373-MR-2017-0734

    Article  Google Scholar 

  31. Torres-Huerta AM, Del Angel-Lopez D, Dominguez-Crespo MA et al (2016) Morphological and mechanical properties dependence of PLA amount in PET matrix processed by single-screw extrusion. Polym-Plast Technol Eng 55:672–683. https://doi.org/10.1080/03602559.2015.1132433

    Article  CAS  Google Scholar 

  32. Mecozzi M, Nisini L (2019) The differentiation of biodegradable and non-biodegradable polyethylene terephthalate (PET) samples by FTIR spectroscopy: A potential support for the structural differentiation of PET in environmental analysis. Infrared Phys Technol 101:119–126. https://doi.org/10.1016/j.infrared.2019.06.008

    Article  CAS  Google Scholar 

  33. Chen Z, Hay JN, Jenkins MJ (2013) The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy. Thermochim Acta 552:123–130. https://doi.org/10.1016/j.tca.2012.11.002

    Article  CAS  Google Scholar 

  34. Chercoles Asensio R, San Andres Moya M, Manuel de la Roja J, Gomez M (2009) Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal Bioanal Chem 395:2081–2096. https://doi.org/10.1007/s00216-009-3201-2

    Article  CAS  PubMed  Google Scholar 

  35. Edge M, Wiles R, Allen NS et al (1996) Characterisation of the species responsible for yellowing in melt degraded aromatic polyesters.1. Yellowing of poly(ethylene terephthalate). Polym Degrad Stab 53:141–151. https://doi.org/10.1016/0141-3910(96)00081-X

    Article  CAS  Google Scholar 

  36. El-Saftawy AA, Elfalaky A, Ragheb MS, Zakhary SG (2014) Electron beam induced surface modifications of PET film. Radiat Phys Chem 102:96–102. https://doi.org/10.1016/j.radphyschem.2014.04.025

    Article  CAS  Google Scholar 

  37. de Carvalho RKC, Ortega FDS, Morandim-Giannetti ADA (2019) Alkyd resin synthesis by enzymatic alcoholysis. Iran Polym J 28:747–757. https://doi.org/10.1007/s13726-019-00738-y

    Article  CAS  Google Scholar 

  38. Rochman RA, Wahyuningsih S, Ramelan AH, Hanif QA (2019) Preparation of nitrogen and sulphur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom of thiourea. 13th Jt Conf Chem 13th Jcc 509:012119. https://doi.org/10.1088/1757-899X/509/1/012119

    Article  CAS  Google Scholar 

  39. Shao W, Jamal R, Xu F et al (2012) The effect of a small amount of water on the structure and electrochemical properties of solid-state synthesized polyaniline. Materials 5:1811–1825. https://doi.org/10.3390/ma5101811

    Article  CAS  PubMed Central  Google Scholar 

  40. Ibrahim KA (2017) Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab J Chem 10:S2668–S2674. https://doi.org/10.1016/j.arabjc.2013.10.010

    Article  CAS  Google Scholar 

  41. Su N (2015) Polyaniline-doped spherical polyelectrolyte brush nanocomposites with enhanced electrical conductivity, thermal stability, and solubility property. Polymers 7:1599–1616. https://doi.org/10.3390/polym7091473

    Article  CAS  Google Scholar 

  42. **ong S, Wang Y, Chu J et al (2019) One-pot hydrothermal synthesis of polyaniline nanofibers/reduced graphene oxide nanocomposites and their supercapacitive properties. High Perform Polym 31:1238–1247. https://doi.org/10.1177/0954008319845435

    Article  CAS  Google Scholar 

  43. Perumbilavil S, Sankar P, Rose TP, Philip R (2015) White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl Phys Lett 107:1–5. https://doi.org/10.1063/1.4928124

    Article  CAS  Google Scholar 

  44. Giannouri M, Bidikoudi M, Pastrana-Martinez LM et al (2016) Reduced graphene oxide catalysts for efficient regeneration of cobalt-based redox electrolytes in dye-sensitized solar cells. Electrochim Acta 219:258–266. https://doi.org/10.1016/j.electacta.2016.10.013

    Article  CAS  Google Scholar 

  45. Johra FT, Lee J-W, Jung W-G (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887. https://doi.org/10.1016/j.jiec.2013.11.022

    Article  CAS  Google Scholar 

  46. Gupta S, Price C (2016) Investigating graphene/conducting polymer hybrid layered composites as pseudocapacitors: Interplay of heterogeneous electron transfer, electric double layers and mechanical stability. Compos Part B-Eng 105:46–59. https://doi.org/10.1016/j.compositesb.2016.08.035

    Article  CAS  Google Scholar 

  47. Ciric-Marjanovic G (2013) Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47. https://doi.org/10.1016/j.synthmet.2013.06.004

    Article  CAS  Google Scholar 

  48. Genies E, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline - a historical survey. Synth Met 36:139–182. https://doi.org/10.1016/0379-6779(90)90050-U

    Article  CAS  Google Scholar 

  49. Franco GT, Santos LHE, Cruz CMGS, Motheo AJ (2018) Effect of the solvent on growth and properties of polyaniline-based composite films. J Solid State Electrochem 22:1339–1347. https://doi.org/10.1007/s10008-017-3704-2

    Article  CAS  Google Scholar 

  50. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: Polyaniline. Prog Polym Sci 23:1443–1484. https://doi.org/10.1016/S0079-6700(98)00008-2

    Article  CAS  Google Scholar 

  51. MacDiarmid AG (1997) Polyaniline and polypyrrole: Where are we headed? Synth Met 84:27–34. https://doi.org/10.1016/S0379-6779(97)80658-3

    Article  CAS  Google Scholar 

  52. Beygisangchin M, Rashid SA, Shafie S et al (2021) Preparations, properties, and applications of polyaniline and polyaniline thin films-a review. Polymers 13:2003. https://doi.org/10.3390/polym13122003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Medeiros ES, Oliveira JE, Consolin-Filho N et al (2012) Uso de Polímeros Condutores em Sensores. Parte 1: Introdução aos Polímeros Condutores. Rev Eletrônica Mater E Process 7:62–77

    Google Scholar 

  54. Huang W, Macdiarmid A (1993) Optical-properties of polyaniline. Polymer 34:1833–1845. https://doi.org/10.1016/0032-3861(93)90424-9

    Article  CAS  Google Scholar 

  55. Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 82:2385. https://doi.org/10.1039/f19868202385

    Article  CAS  Google Scholar 

  56. Çolak N, Sökmen B (2000) Do** of chemically synthesized polyaniline. Des Monomers Polym 3:181–189. https://doi.org/10.1163/156855500300142870

    Article  Google Scholar 

  57. Le T-H, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9:150. https://doi.org/10.3390/polym9040150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, ** Q, Chen J, Duan Y (2014) Theoretical investigation of the protonation mechanism of doped polyaniline. J Clust Sci 25:1501–1510. https://doi.org/10.1007/s10876-014-0743-z

    Article  CAS  Google Scholar 

  59. Sadek AZ, Wlodarski W, Kalantar-Zadeh K et al (2007) Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens Actuators -Phys 139:53–57. https://doi.org/10.1016/j.sna.2006.11.033

    Article  CAS  Google Scholar 

  60. Wang D-W, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752. https://doi.org/10.1021/nn900297m

    Article  CAS  PubMed  Google Scholar 

  61. Belarbi E, Blas-Ferrando VM, Haro M et al (2017) Electropolymerized polyaniline: A promising hole selective contact in organic photoelectrochemical cells (vol 154, pg 143, 2016). Chem Eng Sci 162:375–375. https://doi.org/10.1016/j.ces.2016.12.042

    Article  CAS  Google Scholar 

  62. Korent A, Žagar Soderžnik K, Šturm S, Žužek Rožman K (2020) A correlative study of polyaniline electropolymerization and its electrochromic behavior. J Electrochem Soc 167:106504. https://doi.org/10.1149/1945-7111/ab9929

    Article  CAS  Google Scholar 

  63. Hassan AA, Abdulazeez I, Salawu OA, Al-Betar AR (2020) Electrochemical deposition and characterization of polyaniline-grafted graphene oxide on a glassy carbon electrode. SN Appl Sci 2:1257. https://doi.org/10.1007/s42452-020-3074-8

    Article  CAS  Google Scholar 

  64. Xavier Pinto Medeiros MF, Leyva ME, Alencar de Queiroz AA, Maron LB (2020) Electropolymerization of polyaniline nanowires on poly(2-hydroxyethyl methacrylate) coated platinum electrode. Polim-Cienc E Tecnol 30:e2020008. https://doi.org/10.1590/0104-1428.02020

    Article  Google Scholar 

  65. Zornitta RL, Ruotolo LAM, de Smet LCPM (2022) High-performance carbon electrodes modified with polyaniline for stable and selective anion separation. Sep Purif Technol 290:120807. https://doi.org/10.1016/j.seppur.2022.120807

    Article  CAS  Google Scholar 

  66. Verma S, Mal DS, de Oliveira PR et al (2022) A facile synthesis of novel polyaniline/graphene nanocomposite thin films for enzyme-free electrochemical sensing of hydrogen peroxide. Mol Syst Des Eng 7:158–170. https://doi.org/10.1039/d1me00130b

    Article  CAS  Google Scholar 

  67. Simoes FR, Pocrifka LA, Marchesi LFQP, Pereira EC (2011) Investigation of electrochemical degradation process in polyaniline/polystyrene sulfonated self-assembly films by impedance spectroscopy. J Phys Chem B 115:11092–11097. https://doi.org/10.1021/jp2041668

    Article  CAS  PubMed  Google Scholar 

  68. Marchesi LFQP, Simoes FR, Pocrifka LA, Pereira EC (2011) Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J Phys Chem B 115:9570–9575. https://doi.org/10.1021/jp2041263

    Article  CAS  PubMed  Google Scholar 

  69. Fonseca CP, de Lima Almeida DA, Duarte de Oliveira MC et al (2015) Influence of the polymeric coating thickness on the electrochemical performance of carbon fiber/PAni composites. Polim-Cienc E Tecnol 25:425–432. https://doi.org/10.1590/0104-1428.1804

    Article  CAS  Google Scholar 

  70. Oliveira RD, Santos CS, Ferreira RT et al (2017) Interfacial characterization and supercapacitive properties of polyaniline-gum arabic nanocomposite/graphene oxide LbL modified electrodes. Appl Surf Sci 425:16–23. https://doi.org/10.1016/j.apsusc.2017.06.267

    Article  CAS  Google Scholar 

  71. Panahi S, Es’haghi M (2018) Preparation and electrochemical characterization of PANI/MnCo2O4 nanocomposite as supercapacitor electrode material. Can J Chem 96:477–483. https://doi.org/10.1139/cjc-2017-0423

    Article  CAS  Google Scholar 

  72. Zhang J, Kong L-B, Wang B et al (2009) In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth Met 159:260–266. https://doi.org/10.1016/j.synthmet.2008.09.018

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the São Paulo Research Foundation (FAPESP 2021/0804-4 and 2017/24742-7) for providing financial and technical support to this project, CAPES and CNPQ. We also thank Fundação para a Ciência e a Tecnologia (FCT), Portugal, CEMMPRE, project UIDB/00285/2020, and ARISE, project LA/P/0112/2020, with FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade and national funds through FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio R. Simões.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 414 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, G.M., Cardoso, M.A., Carnaúba, J.H.S. et al. Electrochemical study of screen-printed electrodes modified with electropolymerized polyaniline films grafted with low mass ratio of graphene oxide. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05981-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05981-9

Keywords

Navigation