Log in

The influence of carbon spheres and graphene synthesized by thermal method as platinum-tin electrocatalyst supports to enhance the ethanol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The direct ethanol fuel cell research for high efficiency and portable applications aims to enhance the electrochemical activity and lifetime of the electrocatalyst. Nonetheless, the major portion of electrocatalyst consists of support, 60 to 80% m/m. The physical–chemical properties of support material can directly influence electrochemical activity. This study compares different carbon allotropes as supports of Pt3Sn electrocatalyst, carbon black (C) and graphite (Gr) by commercial acquisition, and carbon spheres (CS) and graphene (G) prepared by our research group using hydrothermal synthesis and thermal expansion methods, respectively. Carbon black is the widely used support. Adopting it as a reference, in acid electrolyte, the forward oxidation current of CV decreases 97% (Pt3Sn/CS), 62% (Pt3Sn/G), and 78% (Pt3Sn/Gr). Nonetheless, in chronoamperometry (CA), Pt3Sn/G exhibited an increase of 48% in the final current compared with Pt3Sn/C, while Pt3Sn/CS current decreased 94% and Pt3Sn/Gr 67%. In alkaline electrolyte, Pt3Sn/G excels further among other materials once the ethanol oxidation current increases 60% in cyclic voltammetry (CV) and final current 36% higher by CA. The other allotropes decreased 99% (Pt3Sn/CS) and 54% (Pt3Sn/Gr) in cyclic voltammetry and exhibited a CA final current 84% (Pt3Sn/CS) and 12% (Pt3Sn/Gr) lower than Pt3Sn/C. Pt3Sn/G has high electrical conductivity and a large surface area which can contribute to enhancement of ethanol oxidation in activity sites. Therefore, the allotrope structure directly influences the electrochemical activity and that can be used to enhance the ethanol oxidation by electrocatalyst, where graphene supports the best improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319. https://doi.org/10.1016/j.copbio.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  2. Latif MN, Wan Isahak WNR, Samsuri A et al (2023) Recent advances in the technologies and catalytic processes of ethanol production. Catalysts 13:1093. https://doi.org/10.3390/catal13071093

    Article  CAS  Google Scholar 

  3. McNicol B (2001) Fuel cells for road transportation purposes   yes or no? J Power Sources 100:47–59. https://doi.org/10.1016/S0378-7753(01)00882-5

    Article  CAS  Google Scholar 

  4. Raj T, Chandrasekhar K, Naresh Kumar A et al (2022) Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. Bioresour Technol 344. https://doi.org/10.1016/j.biortech.2021.126292

    Article  CAS  PubMed  Google Scholar 

  5. da Silva TN, Coradi PC, dos Santos BN et al (2023) Effects of corn drying and storage conditions on flour, starch, feed, and ethanol production: A review. J Food Sci Technol 60:2337–2349. https://doi.org/10.1007/s13197-022-05549-3

    Article  CAS  Google Scholar 

  6. Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): An overview. Int J Hydrogen Energy 41:4214–4228. https://doi.org/10.1016/j.ijhydene.2015.12.145

    Article  CAS  Google Scholar 

  7. Wang J, Wasmus S, Savinell RF (1995) Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell: A real-time mass spectrometry study. J Electrochem Soc 142:4218–4224. https://doi.org/10.1149/1.2048487

    Article  CAS  Google Scholar 

  8. Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: The effect of ethanol concentration. J Electroanal Chem 578:315–321. https://doi.org/10.1016/j.jelechem.2005.01.013

    Article  CAS  Google Scholar 

  9. Marinkovic NS, Li M, Adzic RR (2019) Pt-based catalysts for electrochemical oxidation of ethanol. Top Curr Chem 377:11. https://doi.org/10.1007/s41061-019-0236-5

    Article  CAS  Google Scholar 

  10. Zheng Y, Wan X, Cheng X et al (2020) Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells. Catalysts 10:166. https://doi.org/10.3390/catal10020166

    Article  CAS  Google Scholar 

  11. Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360. https://doi.org/10.1016/0039-6028(95)00412-2

    Article  CAS  Google Scholar 

  12. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. J Electroanal Chem Interfacial Electrochem 60:275–283. https://doi.org/10.1016/S0022-0728(75)80262-2

    Article  CAS  Google Scholar 

  13. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12. https://doi.org/10.1016/j.jpowsour.2007.04.009

    Article  CAS  Google Scholar 

  14. Demirci UB (2007) Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J Power Sources 173:11–18. https://doi.org/10.1016/j.jpowsour.2007.04.069

    Article  CAS  Google Scholar 

  15. Singh BK, Mahapatra SS (2023) Performance study of palladium modified platinum anode in direct ethanol fuel cells: A green power source. J Indian Chem Soc 100. https://doi.org/10.1016/j.jics.2022.100876

    Article  CAS  Google Scholar 

  16. BayrakçekenYurtcan A, Daş E (2018) Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. Int J Hydrogen Energy 43:18691–18701. https://doi.org/10.1016/j.ijhydene.2018.06.186

    Article  CAS  Google Scholar 

  17. Colmati F, Antolini E, Gonzalez ER (2006) Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J Power Sources 157:98–103. https://doi.org/10.1016/j.jpowsour.2005.07.087

    Article  CAS  Google Scholar 

  18. Li W, Zhou W, Li H et al (2004) Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim Acta 49:1045–1055. https://doi.org/10.1016/j.electacta.2003.10.015

    Article  CAS  Google Scholar 

  19. Wang Q, Sun GQ, Jiang LH et al (2007) Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: in situ FTIR spectroscopy and on-line DEMS studies. Phys Chem Chem Phys 9:2686. https://doi.org/10.1039/b700676b

    Article  CAS  PubMed  Google Scholar 

  20. Wu X, Mu F, Zhao H (2020) Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J Mater Sci Technol 55:16–34. https://doi.org/10.1016/j.jmst.2019.05.063

    Article  CAS  Google Scholar 

  21. Dicks AL (2006) The role of carbon in fuel cells. J Power Sources 156:128–141. https://doi.org/10.1016/j.jpowsour.2006.02.054

    Article  CAS  Google Scholar 

  22. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–24. https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  23. Daş E, Kaplan BY, Gürsel SA, Yurtcan AB (2019) Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells. Renew Energy 139:1099–1110. https://doi.org/10.1016/j.renene.2019.02.137

    Article  CAS  Google Scholar 

  24. Kim J-P, Kim Y-K, Park C-K et al (2009) Long-term stability of various carbon-nanotube-based micro-tip emitters. Diam Relat Mater 18:486–489. https://doi.org/10.1016/j.diamond.2008.10.019

    Article  CAS  Google Scholar 

  25. Wu G, More KL, Xu P et al (2013) A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chem Commun 49:3291. https://doi.org/10.1039/c3cc39121c

    Article  CAS  Google Scholar 

  26. Wang R-X, Fan Y-J, Wang L et al (2015) Pt nanocatalysts on a polyindole-functionalized carbon nanotube composite with high performance for methanol electrooxidation. J Power Sources 287:341–348. https://doi.org/10.1016/j.jpowsour.2015.03.181

    Article  CAS  Google Scholar 

  27. Zhang Y, Gu Y, Lin S et al (2011) One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochim Acta 56:8746–8751. https://doi.org/10.1016/j.electacta.2011.07.094

    Article  CAS  Google Scholar 

  28. He D, Cheng K, Peng T et al (2013) Graphene/carbon nanospheres sandwich supported PEMfuel cell metal nanocatalysts with remarkably high activity and stability. J Mater Chem A 1:2126–2132. https://doi.org/10.1039/C2TA00606E

    Article  CAS  Google Scholar 

  29. Karim NA, Shamsul NS, Alias MS, Kamarudin SK (2021) Structural and electronic properties of the adsorption molecules on Co and Fe/N-doped graphene towards the application in direct liquid fuel cell. Struct Chem 32:405–415. https://doi.org/10.1007/s11224-020-01636-3

    Article  CAS  Google Scholar 

  30. Gao L, Yue W, Tao S, Fan L (2013) Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir 29:957–964. https://doi.org/10.1021/la303663x

    Article  CAS  PubMed  Google Scholar 

  31. Jha N, Jafri RI, Rajalakshmi N, Ramaprabhu S (2011) Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell. Int J Hydrogen Energy 36:7284–7290. https://doi.org/10.1016/j.ijhydene.2011.03.008

    Article  CAS  Google Scholar 

  32. Li F, Guo Y, Wu T et al (2013) Platinum nano-catalysts deposited on reduced graphene oxides for alcohol oxidation. Electrochim Acta 111:614–620. https://doi.org/10.1016/j.electacta.2013.08.058

    Article  CAS  Google Scholar 

  33. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5:1–23. https://doi.org/10.1016/j.arabjc.2010.08.022

    Article  CAS  Google Scholar 

  34. Eatemadi A, Daraee H, Karimkhanloo H et al (2014) Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393. https://doi.org/10.1186/1556-276X-9-393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  36. Antolini E (2012) Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B 123–124:52–68. https://doi.org/10.1016/j.apcatb.2012.04.022

    Article  CAS  Google Scholar 

  37. Machuno LGB, Oliveira AR, Furlan RH et al (2015) Multilayer graphene films obtained by dip coating technique. Mater Res 18:775–780. https://doi.org/10.1590/1516-1439.005415

    Article  CAS  Google Scholar 

  38. Inada M, Enomoto N, Hojo J, Hayashi K (2017) Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization. Adv Powder Technol 28:884–889. https://doi.org/10.1016/j.apt.2016.12.014

    Article  CAS  Google Scholar 

  39. Mi Y, Hu W, Dan Y, Liu Y (2008) Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater Lett 62:1194–1196. https://doi.org/10.1016/j.matlet.2007.08.011

    Article  CAS  Google Scholar 

  40. Saida T, Sakakibara K, Igami R, Maruyama T (2022) Synthesis of a Pt/carbon-sphere catalyst and evaluation of its oxygen reduction reaction activity in acidic environments. Energy Fuels 36:1027–1033. https://doi.org/10.1021/acs.energyfuels.1c03834

    Article  CAS  Google Scholar 

  41. Tang K, Fu L, White RJ et al (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877. https://doi.org/10.1002/aenm.201100691

    Article  CAS  Google Scholar 

  42. Patil UV, Pawbake AS, Machuno LGB et al (2016) Effect of plasma treatment on multilayer graphene: X-ray photoelectron spectroscopy, surface morphology investigations and work function measurements. RSC Adv 6:48843–48850. https://doi.org/10.1039/C6RA03046G

    Article  CAS  Google Scholar 

  43. White RJ, Tauer K, Antonietti M, Titirici M-M (2010) Functional hollow carbon nanospheres by latex templating. J Am Chem Soc 132:17360–17363. https://doi.org/10.1021/ja107697s

    Article  CAS  PubMed  Google Scholar 

  44. Bastos TL, Gelamo RV, Colmati F (2023) Carbon-graphene hybrid supporting platinum–tin electrocatalyst to enhance ethanol oxidation reaction. J Appl Electrochem. https://doi.org/10.1007/s10800-023-02027-2

    Article  Google Scholar 

  45. Borchert H, Shevchenko EV, Robert A et al (2005) Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt 3 particles. Langmuir 21:1931–1936. https://doi.org/10.1021/la0477183

    Article  CAS  PubMed  Google Scholar 

  46. Niu S, Li S, Du Y et al (2020) How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett 5:1083–1087

    Article  CAS  Google Scholar 

  47. Guo JW, Zhao TS, Prabhuram J et al (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763. https://doi.org/10.1016/j.electacta.2005.05.056

    Article  CAS  Google Scholar 

  48. Désilets C, Lasia A (2012) Dynamic impedance study of ethanol and acetaldehyde oxidation at platinum in acid solutions. Electrochim Acta 78:286–293. https://doi.org/10.1016/j.electacta.2012.05.102

    Article  CAS  Google Scholar 

  49. Zhang L, Wang L, Holt CMB et al (2012) Highly corrosion resistant platinum–niobium oxide–carbon nanotube electrodes for the oxygen reduction in PEM fuel cells. Energy Environ Sci 5:6156. https://doi.org/10.1039/c2ee02689a

    Article  CAS  Google Scholar 

  50. Lazanas ACh, Prodromidis MI (2023) Electrochemical impedance spectroscopy─a tutorial. ACS Measurement Science Au 3:162–193. https://doi.org/10.1021/acsmeasuresciau.2c00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ribeiro J (2020) Electrochemical impedance spectroscopy a tool on the electrochemical investigations. Revista Virtual de Quimica 12:1626–1641. https://doi.org/10.21577/1984-6835.20200123

    Article  CAS  Google Scholar 

  52. Irazoque S, López-Suárez A, Zagal-Padilla CK, Gamboa SA (2024) Synthesis of Pd-Cu/TPPCu electrocatalyst for direct ethanol fuel cell applications. J Appl Electrochem 54:767–781. https://doi.org/10.1007/s10800-023-02003-w

    Article  CAS  Google Scholar 

  53. Arvay A, Yli-Rantala E, Liu C-H, Peng X-H, Koski P, Cindrella L, Kauranen P, Wilde PM, Kannan AM (2012) Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review. J Power Sources 213:317–337. https://doi.org/10.1016/j.jpowsour.2012.04.026

    Article  CAS  Google Scholar 

  54. Santos DM, Paganoto GT, Queiroz MAR et al (2017) Influence of support material of PtSnNiGa C electrocatalysts for ethanol oxidation. Orbital 9:140–150. https://doi.org/10.17807/orbital.v9i3.949

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the CNPq, grants 554569/2010–8 and 475609/2008–5, and FAPEG, grant 201201270750433, for financial support. FC thanks FAPEG, grant 202110267000537. TLB thanks Capes from scholarship, 88887.701552/2022–00. Rogério V. Gelamo would like to thank the National Council Scientific and Technological Development (CNPq) (grants 440726/2020–4 and 302582/2021–5), Fapemig (Grant APQ-01359–21), and the Brazilian Institute of Science and Technology (INCT) in Carbon Nanomaterials and Nacional de Grafite Ltda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Colmati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Graphene supporting improved Pt3Sn electrocatalysts for ethanol oxidation reaction.

• Carbon allotrope comparison as supporting modified electrocatalytic activity of Pt3Sn.

• Different carbon allotropes supporting electrocatalytic enhanced the ethanol oxidation reaction.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4595 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, T.L., Gelamo, R.V. & Colmati, F. The influence of carbon spheres and graphene synthesized by thermal method as platinum-tin electrocatalyst supports to enhance the ethanol oxidation. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05980-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05980-w

Keywords

Navigation