Log in

Recent advances in surface coating and atomic do** strategies for lithium-ion battery cathodes: implementation approaches and functional mechanisms

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) have become a dominant energy storage method for electronic portable devices and electric vehicles due to their fascinating properties of superior energy density, potential, and lifespan. To further improve the capability of commercial LIBs, great efforts have been continuously made to optimize the structural and electrochemical properties of cathode materials which mainly determine the performance and account for about half the cost of LIBs. By extensively summarizing the recent literature, the two most effective and robust strategies for enhancing the comprehensive performance of representative cathode materials (e.g., LiCoO2, LiNiO2, LiNixCoyMnzO2 (x + y + z = 1), LiNixCoyAlzO2 (x + y + z = 1), and LiFePO4) are presented, that is, surface coating and atomic do**. The detailed implementation approaches and functional mechanisms of various coated materials and doped elements for the cycling and rate performance enhancement of cathode materials are systematically introduced and in depth discussed. The surface coating can primarily inhibit the interfacial oxidation of electrolyte by cathode materials, and improve the cycle life, conductivity, safety, and so on. The atomic do** can effectively enhance the lattice stability, phase conversion reversibility, electron/ion transmission rate, and electrochemical kinetics. The integrated application of the above two strategies could create synergistic effects that significantly improve the electrochemical performance of various cathodes. Finally, a perspective on the future prospect of the rational structural and componential designs of various cathode materials for next-generation high-performance and low-cost LIBs is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Song S, Kim H, Nomoto K, Kim H, Sun X, Hori S, Suzuki K, Matsui N, Hirayama M, Mizoguchi T, Saito T, Kamiyama T, Kanno R (2023) A lithium superionic conductor for millimeter-thick battery electrode. Science 381(6653):50

    Article  CAS  PubMed  Google Scholar 

  2. Zhao S, He Y, Wang Z, Bo X, Hao S, Yuan Y, ** H, Wang S, Lin Z (2022) Advancing performance and unfolding mechanism of lithium and sodium storage in SnO2 via precision synthesis of monodisperse PEG-ligated nanoparticles. Adv Energy Mater 12:2201015

    Article  CAS  Google Scholar 

  3. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167

    Article  CAS  PubMed  Google Scholar 

  4. Fei J, Zhao S, Bo X, **e F, Li G, Ahmed E-A, Zhang Q, ** H, Lin Z (2023) Nano single crystals constructed submicron MnCO3 hollow spindles enabled by solid precursor transition combined Ostwald ripening in-situ on graphene toward exceptional interfacial and capacitive lithium storage. Carbon Energy 5:e333

    Article  CAS  Google Scholar 

  5. **e F, Zhao S, Bo X, Li G, Fei J, Ahmed E-AMA, Zhang Q, ** H, Wang S, Lin Z (2023) A robust solvothermal-driven solid-to-solid transition route from micron SnC2O4 to tartaric acid-capped nano SnO2 anchored on graphene for superior lithium and sodium storage. J Mater Chem A 11:53

    Article  CAS  Google Scholar 

  6. Xu B, Lin B (2018) Assessing the development of China’s new energy industry. Energy Economics 70:116

    Article  Google Scholar 

  7. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190

    Article  CAS  PubMed  Google Scholar 

  8. Fan W, **ong X, Xu Y, Fu L, Wang T, Ma Y, Holze R, Wu Y (2023) Constructing stable Zn anodes for aqueous rechargeable zinc batteries. Next Energy 1(3):100049

    Article  Google Scholar 

  9. Liu Z, Wang R, Zhang P, Dun C, Urban JJ, Yang S, Wang T, Ma Y, Zhong Y, He J, Zhu Z, **ong X, Fan W, Zhou Q, Yang H, Cheng X-B, Wang F, Huang Y, Wu Y (2024) Are sodiation/de-sodiation reactions reversible in two-dimensional metallic NbSe2? Energy Environ Sci 17:2173

    Article  CAS  Google Scholar 

  10. Yan W, Gao W, Yang J-L, **ong X, **ao S, Huang W, Chen Y, Fu L, Zhu Y, Wu Y (2022) Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion-selective COFs composite nanowire for Li-S batteries. Small 18:2106679

    Article  CAS  Google Scholar 

  11. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  CAS  Google Scholar 

  12. Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688

    Article  CAS  Google Scholar 

  13. Hafez MA, Jiao Y, Shi J, Cao Y, Liu D (2018) Stable metal anode enabled by porous lithium foam with superior ion accessibility. Adv Mater 30:1802156

    Article  Google Scholar 

  14. Zhang Y, Gao Z, Song N, He J, Li X (2018) Graphene and its derivatives in lithium-sulfur batteries. Mater Today Energy 9:319

    Article  Google Scholar 

  15. Chen M, Xu W, Jamil S, Jiang S, Huang C, Wang X, Wang Y, Shu H, **ang K, Zeng P (2018) Multifunctional heterostructures for polysulfide suppression in high-performance lithium-sulfur cathode. Small 14:1803134

    Article  Google Scholar 

  16. Guo Y, Li H, Zhai T (2017) Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater 29:1700007

    Article  Google Scholar 

  17. Yan C, Chen G, Sun J, Lv C, Pei J (2015) Edge dislocation surface modification: a new and efficient strategy for realizing outstanding lithium storage performance. Nano Energy 15:558

    Article  CAS  Google Scholar 

  18. Wang KX, Li XH, Chen JS (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527

    Article  CAS  PubMed  Google Scholar 

  19. Tu X, Zhou Y, Song Y (2017) Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries. Appl Surf Sci 400:329

    Article  CAS  Google Scholar 

  20. Bo X, Zhang Q, Li G, Zhang J, Wu R, Wang S, Tiwalade I-K, Wang S, Lin Z, Zhao S (2024) Directionally assembled FeCO3 nanoparticles wrapped with rGO enabled by the synergy of tartaric and ascorbic acids for lithium/sodium storage. Chem Eng J 487:150559

    Article  CAS  Google Scholar 

  21. Yang Y, Li L, Fei H, Peng Z, Ruan G, Tour JM (2014) Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. ACS Appl Mater Inter 6:9590

    Article  CAS  Google Scholar 

  22. Mitzushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x<1): A new cathode material for batteries of high energy density. Solid State Ionics 15:783

    Google Scholar 

  23. Cheng F, Tao Z, **g L, Chen J (2008) Template-directed materials for rechargeable lithium-ion batteries. Chem Mater 20:667

    Article  CAS  Google Scholar 

  24. Scott LD, Jung YS, Cavanagh AS, Yan Y, Dillon AC, George SM, Lee SH (2011) Ultrathin coatings on nano-LiCoO2 for Li-Ion vehicular applications. Nano Lett 11:414

    Article  CAS  PubMed  Google Scholar 

  25. Tukamoto H, West AR (1997) Electronic conductivity of LiCoO2 and its enhancement by magnesium do**. J Electrochem Soc 144:3164

    Article  CAS  Google Scholar 

  26. Levasseur S, Ménétrier M, Delmas C (2002) On the dual effect of Mg do** in LiCoO2 and Li1+δCoO2, structural, electronic properties, and 7Li MAS NMR studies. Chem Mater 14:358

    Article  Google Scholar 

  27. Tan X, Zhang Y, Xu S, Yang P, Liu T, Mao D, Qiu J, Chen Z, Lu Z, Pan F, Chu W (2023) High-entropy surface complex stabilized LiCoO2 cathode. Adv Energy Mater 13(24):2300147

    Article  CAS  Google Scholar 

  28. Huang Y, Zhu Y, Fu H, Ou M, Hu C, Yu S, Hu Z, Chen C-T, Jiang G, Gu H, Lin H, Luo W, Huang Y (2021) Mg-Pillared LiCoO2, Towards stable cycling at 4.6 V. Angew Chem Int Ed 60:4682

    Article  CAS  Google Scholar 

  29. Xu HT, Zhang HJ, Liu L, Feng YY, Wang Y (2015) Fabricating hexagonal Al-Doped LiCoO2 nanomeshes based on crystal-mismatch strategy for ultrafast lithium storage. ACS Appl Mater Inter 7:20979

    Article  CAS  Google Scholar 

  30. Alcantara R, Lavela P, Tirado JL, Stoyanova R, Zhecheva E (1997) Structure and electrochemical properties of boron-doped LiCoO2. J Solid State Chem 132:265

    Article  Google Scholar 

  31. Gopukumar S, Jeong Y, Kim KB (2003) Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion 159:223

    Article  CAS  Google Scholar 

  32. Xu HH, Zhu J, Ke X, He H, Zhang H, Li H (2021) First-principles study of the structure and electronic properties of Ti-doped LiCoO2. Physica Status Solidi B-basic Solid State Physics 2589:200412

    Google Scholar 

  33. Valanarasu S, Chandramohan R, Thirumalai J, Vijayan TA (2012) Structural and electrochemical investigation of Zn-doped LiCoO2 powders. Ionics 18:39

    Article  CAS  Google Scholar 

  34. Stoyanova R, Zhecheva E, Zarkova L (1994) Effect of Mn-Substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions. Solid State Ionics 73:233

    Article  CAS  Google Scholar 

  35. Ceder G, Chiang YM, Sadoway DR, Aydinol KM, Jang YI (1998) Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392:694

    Article  CAS  Google Scholar 

  36. Chen H, Dawson JA, Harding JH (2014) Effects of cationic substitution on structural defects in layered cathode materials LiNiO2. J Mater Chem A 2:7988

    Article  CAS  Google Scholar 

  37. Yoon CS, Choi MJ, Jun DW, Qian Z, Payam K, Kim K et al (1808) Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chem Mater 2018:30

    Google Scholar 

  38. Yoon CS, Kim U-H, Park G-T, Kim SJ, Kim K-H, Kim J et al (2018) Self-passivation of a LiNiO2 cathode for a lithium-ion battery through Zr do**. ACS Energy Lett 3(7):1634

    Article  CAS  Google Scholar 

  39. **ong X, Wang Z, Yan G, Kuriyama N (2014) Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. J Power Sources 245:183

    Article  CAS  Google Scholar 

  40. Rougier A, Saadoune I, Gravereau P, Willmann P, Delmas C (1996) Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials. Solid State Ion 90:83

    Article  CAS  Google Scholar 

  41. Chebiam RV, Prado F, Manthiram A (2001) Soft chemistry synthesis and characterization of layered Li1-xNi1-yCoyO2-δ (0≤x≤1 an d 0≤x≤1). Chem Mater 13:2951

    Article  CAS  Google Scholar 

  42. Ismael S, Claude D (1996) LiNi1-yCoyO2 positive electrode materials, relationships between the structure physical properties and electrochemical behavior. J Mater Chem 6:193

    Article  Google Scholar 

  43. Hwang BJ, Santhanam R, Chen CH (2002) Effect of synthesis conditions on electrochemical properties of LiNi1-yCoyO2 cathode for lithium rechargeable batteries. J Power Sources 114:244

    Article  Google Scholar 

  44. Rossen E, Jones CDW, Dahn JR (1992) Structure and electrochemistry of LixMnyNi1-yO2. Solid State Ion 57:311

    Article  CAS  Google Scholar 

  45. Spahr ME, Novak P, Schnyder B, Haas O, Nesper R (1998) Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. J Electrochem Soc 145:1113

    Article  CAS  Google Scholar 

  46. Rozier P, Tarascon JM (2015) Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries, chances and challenges. J Electrochem Soc 162:2490

    Article  Google Scholar 

  47. Ohzuku T, Ueda A, Kouguchi M (1995) Synthesis and characterization of LiAl1/4Ni3/4O2 (R\(_{\overline{3}}\)m) for lithium-ion (shuttlecock) batteries. J Electrochem Soc 142:4033

    Article  CAS  Google Scholar 

  48. Epifanio A, Croce F, Ronci F et al (2001) Thermal, electrochemical and structural properties of stabilized LiNiyCo1-y-zMzO2 lithium-ion cathode material prepared by a chemical route. Phys Chem Chem Phys 3:4399

    Article  Google Scholar 

  49. Epifanio A, Rougier A, Grune M, Delmas C (2003) Effects of aluminum on the structural and electro chemical properties of LiNiO2. J Power Source 115:305

    Article  Google Scholar 

  50. Guilmard M, Rougier A, Grune M, Croguennec L, Delmas C (2003) Effects of aluminum on the structural and dlectrochemical properties of LiNiO2. J Power Sources 115:305

    Article  CAS  Google Scholar 

  51. Park SH, Park KS, Sun YK, Nahm KS, Lee YS, Yoshio M (2001) Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol–gel method. Electrochim Acta 46:1215

    Article  CAS  Google Scholar 

  52. Julien CM, Mauger A (2020) NCA, NCM811, and the route to Ni-richer lithium-ion batteries. Energies 13:1

    Article  Google Scholar 

  53. Nam GW, Park NY, Park KJ, Yang J, Sun YK (2019) Capacity fading of Ni-Rich NCA cathodes, effect of microcracking extent. ACS Energy Lett 4:2995

    Article  CAS  Google Scholar 

  54. Yu J (2017) Carbon Nanotubes Coating on LiNi0.8Co0.15Al0.05O2 as cathode materials for lithium battery. Int J Electrochem Sci 12:11892

    Article  CAS  Google Scholar 

  55. Liu Z, Zhen W, Lu T, Dai P, Peng G, Zhu Y (2018) Modification of LiNi0.8Co0.15Al0.05O2 using nanoscale carbon coating construction. J Alloys Compd 763:701

    Article  CAS  Google Scholar 

  56. Feng D, Liu Q, Hu T, Chen Y, Zeng T (2021) Boosting cyclability performance of the LiNi0.8Co0.15Al0.05O2 cathode by a polyacrylonitrile-induced conductive carbon surface coating. Ceram Int 47:12706

    Article  CAS  Google Scholar 

  57. Zhao B, Si J, Cao C, Zhang J, **a B, **e J et al (2019) Enhanced electrochemical performance of LiNi0.80Co0.15Al0.05O2 cathode by reducing lithium residue with low-temperature fluorination treatment. Solid State Ionics 339:114998

    Article  CAS  Google Scholar 

  58. Zhou P, Zhang Z, Meng H, Lu Y, Cao J, Cheng F et al (2016) SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. Nanoscale 8:19263

    Article  CAS  PubMed  Google Scholar 

  59. Du K, **e HB, Hu GR, Peng ZD, Cao YB, Yu F (2016) Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method, spray-drying coating with nano-Al2O3. ACS Appl Mater Inter 8:17713

    Article  CAS  Google Scholar 

  60. **ong X, Wang X, Yan G, Guo H, Li X (2014) Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. J Power Sources 245:183

    Article  CAS  Google Scholar 

  61. Lee MJ, Noh M, Park MH, Jo M, Kim H, Nam H et al (2015) Role of nanoscale-range vanadium treatment on LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures. J Mater Chem A 3:13453

    Article  CAS  Google Scholar 

  62. Huang Y, Huang Y, Hu X (2017) Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4. Electrochim Acta 231:294

    Article  CAS  Google Scholar 

  63. **e H, Du K, Hu G, Peng Z, Cao Y (2016) The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. J Phys Chem C 120:3235

    Article  CAS  Google Scholar 

  64. Zhao J, Wang Z, Wang J, Guo H, Li X, Gui W, Chen N, Yan G (2018) Anchoring K+ in Li+ Sites of LiNi0.80Co0.15Al0.05O2 cathode material to suppress its structural degradation during high-voltage cycling. Energy Technol 6:2358

    Article  CAS  Google Scholar 

  65. Bai X, Wei A, He R, Li W, Li X, Zhang L, Liu Z (2020) The structural and electrochemical performance of Mg-doped LiNi0.85Co0.10Al0.05O2 prepared by a solid state method. J Electroanal Chem 858:113771

    Article  CAS  Google Scholar 

  66. Liu D, Liu S, Zhang C, You L, Huang T, Yu A (2019) Revealing the effect of Ti do** on significantly enhancing cyclic performance at a high cutoff voltage for Ni-rich LiNi0.8Co0.15Al0.05O2 cathode. ACS Sustainable Chem Eng 7:10661

    Article  CAS  Google Scholar 

  67. Jang BC, Son JT (2016) Structural analysis of iron-doped LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries. J Nanosci Nanotechnoi 16:10649

    Article  CAS  Google Scholar 

  68. Muto S, Tatsumi K, Kojima Y, Oka H, Kondo H, Horibuchi K, Ukyo Y (2012) Effect of Mg- do** on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods. J Power Sources 205:449

    Article  CAS  Google Scholar 

  69. Yu Z, Tong Q, Cheng Y, Yang P, Zhao G, Li H et al (2022) Enabling 4.6 V LiNi0.6Co0.2Mn0.2O2 cathodes with excellent structural stability: combining surface LiLaO2 self-assembly and subsurface La-pillar engineering. Energy Mater 2:200037

    Article  CAS  Google Scholar 

  70. Yu Z, Qu X, Wan T, Dou A, Zhou Y, Peng X et al (2020) Synthesis and mechanism of high structural stability of nickel-rich cathode materials by adjusting Li-excess. ACS Appl Mater Inter 12(36):40393

    Article  CAS  Google Scholar 

  71. Qu X, Huang H, Wang T, Hu Long, Yu Z, Liu Y et al (2022) An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy 91:106665

    Article  CAS  Google Scholar 

  72. Yoon CS, Park KJ, Kim UH, Kang KH, Ryu HH, Sun YK (2017) High-energy Ni-rich Li[NixCoyMn1−x−y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem Mater 29:10436

    Article  CAS  Google Scholar 

  73. Feng Y, Xu H, Wang B, Wang S, Li S (2021) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials by Al2O3 coating. J Electrochem Energy 18:031005

    CAS  Google Scholar 

  74. Xu GL, Liu Q, Lau KK, Liu Y, Liu X, Gao H et al (2019) Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat Energy 4:484

    Article  CAS  Google Scholar 

  75. Mohanty D, Dahlberg K, King DM, David LA, Sefat AS, Wood DL et al (2016) Modifification of Ni-rich FCG NCM and NCA cathodes by atomic layer deposition, preventing surface phase transitions for high-voltage lithium-ion batteries. Sci Rep 6:26532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Srur-Lavi O, Miikkulainen V, Markovsky B, Grinblat J, Talianker M, Fleger Y et al (2017) Studies of the electrochemical behavior of LiNi0.80Co0.15Al0.05O2 electrodes coated with LiAlO2. J Electrochem Soc 164:A3266

    Article  CAS  Google Scholar 

  77. Liu Y, Zeng T, Li G, Wan T, Li M, Zhang X, Li M, Su M, Dou A, Zeng W, Zhou Y, Guo R, Chu D (2022) The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Stor Mater 52:534

    Google Scholar 

  78. Neudeck S, Strauss F, Garcia G, Wolf H, Janek J, Hartmann P, Brezesinski T (2019) Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material. Chem Commun 55:2174

    Article  CAS  Google Scholar 

  79. Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, Talianker M et al (2018) From surface ZrO2 coating to bulk Zr do** by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8:1701682

    Article  Google Scholar 

  80. Huang J, Fang X, Wu Y, Zhou L, Wang Y, ** Y et al (2018) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3. J Electroanal Chem 823:359

    Article  CAS  Google Scholar 

  81. Liang L, Hu G, Jiang F, Cao Y (2016) Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J Alloys Compd 657:570

    Article  CAS  Google Scholar 

  82. Li Q, Zuang W, Li Z, Wu S, Li N, Gao M et al (2020) Realizing superior cycle stability of a Ni-rich layered LiNi0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification. Chem Electro Chem 7:998

    CAS  Google Scholar 

  83. Weigel T, Schipper F, Erickson EM, Susai FA, Markovsky B, Aurbach D (2019) Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett 4:508

    Article  CAS  Google Scholar 

  84. Fan Q, Yang S, Liu J, Liu H, Lin K, Liu R et al (2019) Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J Power Source 421:91–99

    Article  CAS  Google Scholar 

  85. Liu Y, Qian K, He J, Chu X, He Y-B, Wu M et al (2017) In-situ polymerized lithium polyacrylate (PAALi) as dual-functional lithium source for high-performance layered oxide cathodes. Electrochim Acta 249:43–51

    Article  CAS  Google Scholar 

  86. Wang L, Laing J, Zhang X, Li S, Wang T, Ma F et al (2022) An effective dual-modification strategy to enhance the performance of LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries. Nanoscale 52:534

    Google Scholar 

  87. Qu X, Huang H, Wan T, Hu L, Yu Z, Liu Y et al (2022) An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy 91:106665

    Article  CAS  Google Scholar 

  88. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q et al (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10

    Article  CAS  Google Scholar 

  89. Chung SY, Bloking JT, Andersson AS, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123

    Article  CAS  PubMed  Google Scholar 

  90. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode materials. Electrochem Soc Abstr 99:127

    Google Scholar 

  91. Yang S, Song Y, Ngala K, Zavalij PY, Whittingham MS (2003) Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides. J Power Source 119:239

    Article  Google Scholar 

  92. Zang D, Yu X, Wang Y, Cai R, Shao Z, Liao X-Z, Ma Z-F (2009) Ballming-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor. J Electrochem Soc 156:A802

    Article  Google Scholar 

  93. Luo SH, Tang ZL, Lu JB, Zhang ZT (2007) A novel synthetic route for LiFePO4/C cathode materials by addition of starch for lithium-ion batteries. Chinese Chem Lett 18:237

    Article  CAS  Google Scholar 

  94. Wang Y, Wang Y, Hosono E, Wang K, Zhou H (2008) The design of a LiFePO4/carbon nanocomposite with a structure and its synthesis by an in situ polymerization method. Angew Chem Int Ed 47:7461

    Article  CAS  Google Scholar 

  95. Oh J, Lee J, Hwang T, Kim JM, Seoung KD, Piao Y (2017) Dual layer coating strategy utilizing N-doped carbon and reduced graphene oxide for high-performance LiFePO4 cathode material. Electrochim Acta 231:85

    Article  CAS  Google Scholar 

  96. Tao R, Li F, Lu X, Liu F, Xu J, Kong D et al (2020) High-conductivity-dispersibility graphene made by catalytic exfoliation of graphite for lithium-ion battery. Adv Funct Mater 31:2007630

    Article  Google Scholar 

  97. Li X, Wang M, Zhou Q, Ge M, Zhang M, Liu W, Shi Z, Yue H, Zhang H, Yin Y, Yang S-T (2024) The prilling and cocoating collaborative strategy to construct high performance of regeneration LiFePO4 materials. ACS Mater Lett 6:640

    Article  CAS  Google Scholar 

  98. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductivity phospho-olivines as lithium storage electrodes. Nat Mater 1:123

    Article  CAS  PubMed  Google Scholar 

  99. Wang D, Li H, Shi S, Huang X, Chen L (2005) Improving the rate performance of LiFePO4 by Fe-site do**. Electrochim Acta 50:2955

    Article  CAS  Google Scholar 

  100. Harrison KL, Bridges CA, Paranthaman MP, Segre CU, Manthriam A (2013) Temperature dependence of aliovalent-vanadium do** in LiFePO4 cathodes. Chem Mater 25:768

    Article  CAS  Google Scholar 

  101. Shi S, Liu L, Ouyang C, Wang DS, Wang Z, Chen L et al (2003) Enhancement of electronic conductivity of LiFePO4 by Cr do** and its identification by first-principles calculations. Phys Rev B 68:195108

    Article  Google Scholar 

  102. Zhang W, Hu Y, Tao X, Huang H, Gan Y, Wang C (2010) Synthesis of spherical LiFePO4/C via Ni do**. J Phys Chem Solids 71:1196

    Article  CAS  Google Scholar 

  103. Hu C, Yi H, Fang H, Yang B, Dai Y (2010) Mg Do** of LiFePO4 by co-precipitation for lithium ion batteries. Int J Electrochem Sci 5:1457

    Article  CAS  Google Scholar 

  104. Téliz E, Martínez M, Faccio R, Pignanelli F, Díaz V (2020) Electrochemical response of carbon doped LiFePO4 olivine nanoparticles, cobalt do** and temperature calcination effects. J Electroanal Chem 878:114581

    Article  Google Scholar 

  105. Huang Y, Xu Y, Yang X (2013) Enhanced electrochemical performances of LiFePO4/C by co-do** with magnesium and fluorine. Electrochim Acta 113:156

    Article  CAS  Google Scholar 

  106. Wang H, Lai A, Huang D, Chu Y, Hu S, Pan Q et al (2021) Y-F co-do** behavior of LiFePO4/C nanocomposites for high-rate lithium-ion batteries. New J Chem 45:5695

    Article  CAS  Google Scholar 

  107. Cui Z, Guo X, Ren J, Xue H, Tang F, La P et al (2021) Enhanced electrochemical performance and storage and storage mechanism of LiFePO4 doped by Co, Mn and S elements for lithium-ion batteries. Electrochim Acta 388:138592

    Article  CAS  Google Scholar 

  108. Pan Z, Chen H, Zeng Y, Ding Y, Pu X, Chen Z (2023) Fluorine chemistry in lithium-ion and sodium-ion batteries. Energy Mater 3:300054

    Article  CAS  Google Scholar 

  109. Meng Y, Li Y, **a J, Hu Q, Ke X, Ren G, Zhu F (2019) F-doped LiFePO4@N/B/F-doped carbon as high performance cathode materials for Li-ion batteries. Appl Surf Sci 476:761. https://doi.org/10.1016/j.apsusc.2019.01.139

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the Scientific Research Fund of Zhejiang Provincial Education Department (Y202250766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoxu Bo.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, L., Bo, X. Recent advances in surface coating and atomic do** strategies for lithium-ion battery cathodes: implementation approaches and functional mechanisms. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05929-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05929-z

Keywords

Navigation