Log in

Optimization of mass matching and organic electrolytes for Li-ion hybrid supercapacitors based on LiMn2O4 cathode and AC anode with commercial-level mass loading

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium-ion hybrid supercapacitor, composed of a capacitor-type electrode and a battery-type electrode, has the potential to deliver high energy density and high power density simultaneously. In addition to electrode materials, mass matching and electrolyte are also critical to the design of a practical lithium-ion capacitor (LIC). Here, we designed commercially available pouch-type lithium-ion hybrid supercapacitors based on lithium manganate oxide (LMO) cathode and activated carbon (AC) anode with commercial-level mass loading. To optimize the performance of the LIC, meticulous mass match and electrolyte study have been performed not only in terms of energy and power densities, but also from the perspective of low-temperature performance, cycle stability, and operating voltage. Optimized LIC, using a cathode/anode mass ratio of 1/1 and an acetonitrile-based electrolyte, shows a good rate capability with 65.3% of the capacity retained even at a high C-rate of 50 C and an outstanding low-temperature performance with 46.3% of the capacity remained at −40 °C. This LIC cell delivers a maximum energy density of 9.7 W h kg−1 and a maximum power density of 8198 W kg−1 within an upper limit voltage of 2.3 V, and retains 82.8% of the initial energy at 1.0~2.3 V after 12,000 charge-discharge cycles. Moreover, enhancing the operating voltage to 3.1 V, the LIC cell displays a higher energy density of 13.9 Wh kg−1 with 59.3 Wh kg−1 of the energy density based on active materials. And the LIC cell still holds 79.1% of its initial energy at a wide working voltage of 0.5~2.5 V after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu J, Cai X, Cai S, Shao Y, Hu C, Lu S, Ding S (2023) High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ Mater 6(5):e12450

    Article  CAS  Google Scholar 

  2. Masias A, Marcicki J, Paxton WA (2021) Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett 6(2):621–630

    Article  CAS  Google Scholar 

  3. Li J, Fleetwood J, Hawley WB, Kays W (2021) From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem Rev 122(1):903–956

    Article  PubMed  Google Scholar 

  4. Chen L, Wang J, Yang Z, Zhang J, Hou S, Hao C, Zhang J (2022) Recent advances in flexible supercapacitors. J Solid State Electr 26(12):2627–2658

    Article  CAS  Google Scholar 

  5. Zhu S, Zhang Z, Sheng J, Jia G, Ni J, Li Y (2023) High-quality single-walled carbon nanotube films as current collectors for flexible supercapacitors. J Mater Chem A 11(24):12941–12949

    Article  CAS  Google Scholar 

  6. Pershaanaa M, Bashir S, Ramesh S, Ramesh K (2022) Every bite of Supercap: a brief review on construction and enhancement of supercapacitor. J Energy Storage 50:104599

    Article  Google Scholar 

  7. Iqbal MZ, Aziz U (2022) Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices. J Energy Storage 46:103823

    Article  Google Scholar 

  8. **ng F, Bi Z, Su F, Liu F, Wu Z (2022) Unraveling the design principles of battery-supercapacitor hybrid devices: from fundamental mechanisms to microstructure engineering and challenging perspectives. Adv Energy Mater 12(26):2200594

    Article  CAS  Google Scholar 

  9. Han P, Xu G, Han X, Zhao J, Zhou X, Cui G (2018) Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv Energy Mater 8(26):1801243

    Article  Google Scholar 

  10. Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148(8):A930–A939

    Article  CAS  Google Scholar 

  11. Li J, Zhang X, Peng R, Huang Y, Guo L, Qi Y (2016) LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors. RSC Adv 6(60):54866–54873

    Article  CAS  Google Scholar 

  12. Chen L, Zhai W, Chen L, Li D, Ma X, Ai Q, Xu X, Hou G, Zhang L, Feng J, Si P, Ci L (2018) Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J Power Sources 392:116–122

    Article  CAS  Google Scholar 

  13. ** L, Zheng J, Shi Z, Qi J, Wang C (2013) Electrochemical performance of MCMB/(AC+LiFePO4) lithium-ion capacitors. Chinese Sci Bull 58:689–695

    Article  CAS  Google Scholar 

  14. Wu M, Zhang C, Yang C, An Z, Xu J (2022) Over-heating triggered thermal runaway characteristic of lithium ion hybrid supercapacitor based lithium nickel cobalt manganate oxide/activated carbon cathode and hard carbon anode. Solid State Ionics 377:115883

    Article  CAS  Google Scholar 

  15. Sun X, Zhang X, Zhang H, Xu N, Wang K, Ma Y (2014) High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J Power Sources 270:318–325

    Article  CAS  Google Scholar 

  16. Sivakkumar SR, Pandolfo AG (2012) Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim Acta 65:280–287

    Article  CAS  Google Scholar 

  17. Zhan D, Zhang Q, Hu X, Zhu G, Peng T (2013) Single-crystalline LiMn2O4 nanorods as cathode material with enhanced performance for Li-ion battery synthesized via template-engaged reaction. Solid State Ionics 239:8–14

    Article  CAS  Google Scholar 

  18. Zhang SS (2020) Dual-carbon lithium-ion capacitors: principle, materials, and technologies. Batteries Supercaps 3(11):1137–1146

    Article  CAS  Google Scholar 

  19. Arnaiz M, Ajuria J (2020) Pre-lithiation strategies for lithium ion capacitors: past, present, and future. Batter Supercaps 4(5):733–748

    Article  Google Scholar 

  20. Arnaiz M, Gómez-Cámer JL, Mijangos F, Rojo T, Goikolea E, Ajuria J (2019) Novel lithium-ion capacitor based on TiSb2 as negative electrode: the role of mass ratio towards high energy-to-power densities and long cyclability. Batter Supercaps 2(2):153–159

    Article  CAS  Google Scholar 

  21. Surendran V, Lal A, Shaijumon MM (2021) Mass balancing of hybrid ion capacitor electrodes: a simple and generalized semiempirical approach. ACS Appl Mater Interfaces 13(44):52610–52619

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Gao F (2009) Analysis of electrodes matching for asymmetric electrochemical capacitor. J Power Sources 194(2):1184–1193

    Article  CAS  Google Scholar 

  23. Dsoke S, Fuchs B, Gucciardi E, Wohlfahrt-Mehrens M (2015) The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. J Power Sources 282:385–393

    Article  CAS  Google Scholar 

  24. Li Y, Fu D, Zhang X, Qiu S, Qin C (2016) Preparation, morphology and electrochemical performances of LiFePO4-expanded graphite composites as the positive material for Li-ion capacitor application in aqueous neutral electrolyte. J Mater Sci-Mater El 27:4417–4425

    Article  CAS  Google Scholar 

  25. Li J, Guo J, Zhang X, Huang Y, Guo L (2017) Asymmetric supercapacitors with high energy and power density fabricated using LiMn2O4 nano-rods and activated carbon electrodes. Int J Electrochem Sci 12(2):1157–1166

    Article  CAS  Google Scholar 

  26. Abbas Q, Béguin F (2018) Sustainable carbon/carbon supercapacitors operating down to −40 °C in aqueous electrolyte made with cholinium salt. Chemsuschem 11(5):975–984

    Article  CAS  PubMed  Google Scholar 

  27. Lee GJ, Abbas MA, Lee MD, Lee J, Lee J, Bang JH (2020) Lithiation mechanism change driven by thermally induced grain fining and its impact on the performance of LiMn2O4 in lithium-ion batteries. Small 16(29):2002292

    Article  CAS  Google Scholar 

  28. Hua WB, Wang SN, Guo XD, Chou SL, Yin K, Zhong BH, Dou SX (2015) Vacuum induced self-assembling nanoporous LiMn2O4 for lithium ion batteries with superior high rate capability. Electrochim Acta 186:253–261

    Article  CAS  Google Scholar 

  29. Wei Y, Tang B, Liang X, Zhang F, Tang Y (2023) An ultrahigh-mass-loading integrated free-standing functional all-carbon positive electrode prepared using an architecture tailoring strategy for high-energy-density dual-ion batteries. Adv Mater 35(30):2302086

    Article  CAS  Google Scholar 

  30. Constable C, Coowar F, Copley M, Kendrick E, Kendrick C, Hasa I (2024) Influence of particle size and mass loading of hard carbon on sodium ion battery rate performance in industrially relevant full cells. J Electrochem Soc 171(2):023506

    Article  Google Scholar 

  31. Lin SY, Zhang X (2015) Two-dimensional titanium carbide electrode with large mass loading for supercapacitor. J Power Sources 294:354–359

    Article  CAS  Google Scholar 

  32. Laschuk NO, Easton EB, Zenkina OV (2021) Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv 11:27925–27936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newell R, Faure-Vincent J, Iliev B, Schubert T, Aradilla D (2018) A new high performance ionic liquid mixture electrolyte for large temperature range supercapacitor applications (-70 °C to 80 °C) operating at 3.5 V cell voltage. Electrochim Acta 267:15–19

    Article  CAS  Google Scholar 

  34. Lang J, Zhang X, Liu L, Yang B, Yang J, Yan X (2019) Highly enhanced energy density of supercapacitors at extremely low temperatures. J Power Sources 423:271–279

    Article  CAS  Google Scholar 

  35. Zhu S, Wang Y, Zhang J, Sheng J, Yang F, Wang M, Ni J, Jiang H, Li Y (2023) Jahn-Teller effect directed bandgap tuning of birnessite for pseudocapacitive application. Energy Environ Mater 6(3):e12382

    Article  CAS  Google Scholar 

  36. Ruan J, Luo S, Wang S, Hu J, Fang F, Wang F, Chen M, Zheng S, Sun D, Song Y (2023) Enhancing the whole migration kinetics of Na+ in the anode side for advanced ultralow temperature sodium-ion hybrid capacitor. Adv Energy Mater 13(34):2301509

    Article  CAS  Google Scholar 

  37. Li Z, Yao YX, Sun S, ** CB, Yao N, Yan C, Zhang Q (2023) 40 years of low-temperature electrolytes for rechargeable lithium batteries. Angew Chem Int Ed 62(37):e202303888

    Article  CAS  Google Scholar 

  38. Nikiforidis G, Phadke S, Anouti M (2023) Comparative internal pressure evolution at interfaces of activated carbon for supercapacitors containing electrolytes based on linear and cyclic ammonium tetrafluoroborate salts in acetonitrile. Adv Mater Interfaces 10(2):2202046

    Article  CAS  Google Scholar 

  39. Hu C, Qu W, Rajagopalan R, Randall C (2014) Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes. J Power Sources 272:90–99

    Article  CAS  Google Scholar 

  40. An Z, Xu X, Fan L, Yang C, Xu J (2021) Investigation of electrochemical performance and gas swelling behavior on Li4Ti5O12/activated carbon lithium-ion capacitor with acetonitrile-based and ester-based electrolytes. Electronics 10(21):2623

    Article  CAS  Google Scholar 

  41. Matsuoka N, Kamine H, Natsume Y, Yoshino A (2021) Moderately concentrated acetonitrile-containing electrolytes with high ionic conductivity for durability-oriented lithium-ion batteries. ChemElectroChem 8(16):3095–3104

    Article  CAS  Google Scholar 

  42. Zheng F, Li Y, Wang X (2018) Study on effects of applied current and voltage on the ageing of supercapacitors. Electrochim Acta 276:343–351

    Article  CAS  Google Scholar 

  43. He M, Fic K, Fra E, Novák P, Berg EJ (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9(2):623–633

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support that has been given by Zhongren Zhao, Shanghai Aowei Technology Development Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4684 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**a, H., Yu, J. & Yang, C. Optimization of mass matching and organic electrolytes for Li-ion hybrid supercapacitors based on LiMn2O4 cathode and AC anode with commercial-level mass loading. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05884-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05884-9

Keywords

Navigation