Log in

3D porous Ti3C2Tx prepared on carbon cloth by electrophoretic co-deposition for enhanced supercapacitor performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

MXenes are promising two-dimensional materials for energy storage applications, but the stacking and aggregation of MXene nanosheets degrade their electrochemical performance. In this work, three-dimensional (3D) porous Ti3C2Tx was successfully prepared on carbon cloth with controllable mass loading, porosity, and pore size with an electrophoretic co-deposition (EPCD) strategy by introducing polystyrene (PS) microspheres as soft sacrificial templates. The resulting 3D porous structure exhibits a significant enhancement in electrochemical performance due to effectively suppressing the stacking and aggregation of Ti3C2Tx nanosheets, which provides additional electron transport channels and electrochemically active sites. The modified 3D porous Ti3C2Tx@CC shows a specific capacitance as high as 299 F g−1 (about 1.6 times that of pristine Ti3C2Tx) at a current density of 1 A g−1, a satisfactory capacitance of 234 F g−1 (approximately 78.3% of the initial capacitance) under a high current density of 10 A g−1, and excellent cycling stability. Furthermore, a porous Ti3C2Tx@CC-based symmetric supercapacitor displays an energy density of 6.6 µWh cm−2 (3.9 Wh kg−1) at a power density of 0.2 mW cm−2 (125 W kg−1). This work facilitates an effective EPCD strategy for producing 3D porous Ti3C2Tx for energy storage, electrocatalysis, and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang J, Zhang Y, Nie P, Xu G, Shi M, Wang J, Wu Y, Fu R, Dou H, Zhang X (2017) Advanced Sustainable Systems 2:1700110

    Article  Google Scholar 

  2. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  PubMed  Google Scholar 

  3. Zhang J, Wang Y, Yu M, Ni J, Li L (2022) ACS Energy Lett 7(5):1835–1841

    Article  CAS  Google Scholar 

  4. Maiti UN, Lim J, Lee KE, Lee WJ, Kim SO (2014) Adv Mater 26:615–619

    Article  CAS  PubMed  Google Scholar 

  5. Liu L, Yu Y, Yan C, Li K, Zheng Z (2015) Nat Commun 6:7260

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Yang Y, Fei H, Ruan G, **ang C, Tour JM (2014) Adv Mater 26:8163–8168

    Article  CAS  PubMed  Google Scholar 

  7. Ratha S, Rout CS (2013) ACS Appl Mater Interfaces 5:11427–11433

    Article  CAS  PubMed  Google Scholar 

  8. Zhao R, Di H, Hui X, Zhao D, Wang R, Wang C, Yin L (2020) Energy Environ Sci 13:246–257

    Article  CAS  Google Scholar 

  9. Ren CE, Zhao M-Q, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum MW, Gogotsi Y (2016) ChemElectroChem 3:689–693

    Article  CAS  Google Scholar 

  10. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Chem Mater 29:7633–7644

    Article  CAS  Google Scholar 

  11. An Y, Tian Y, Man Q, Shen H, Liu C, **ong S, Feng J (2023) Nano Lett 23(11):5217–5226

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Mashtalir O, Lukatskaya MR, Zhao M-Q, Barsoum MW, Gogotsi Y (2015) Adv Mater 27:3501–3506

    Article  CAS  PubMed  Google Scholar 

  13. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) ACS Nano 6:1322–1331

    Article  CAS  PubMed  Google Scholar 

  14. Dutta A, Sharon D, Shpigel N, Borenstein A (2022) J Solid State Electrochem 26:1777–1790

    Article  CAS  Google Scholar 

  15. Pan Z, Yang C, Chen Z, Ji X (2022) Nano Res 15:8991–8999

    Article  ADS  CAS  Google Scholar 

  16. Zhao M-Q, **e X, Ren CE, Makaryan T, Anasori B, Wang G, Gogotsi Y (2017) Adv Mater 29:1702410

    Article  Google Scholar 

  17. Wang H, Li L, Zhu C, Lin S, Wen J, ** Q, Zhang X (2019) J Alloy Compd 778:858–865

    Article  CAS  Google Scholar 

  18. Yang X, Wang Q, Zhu K, Ye K, Wang G, Cao D, Yan J (2021) Adv Func Mater 31:2101087

    Article  CAS  Google Scholar 

  19. Zhang P, Zhu Q, Soomro RA, He S, Sun N, Qiao N, Xu B (2020) Adv Func Mater 30:2000922

    Article  CAS  Google Scholar 

  20. Yang X, Yao Y, Wang Q, Zhu K, Ye K, Wang G, Cao D, Yan J (2022) Adv Func Mater 32:2109479

    Article  CAS  Google Scholar 

  21. Li Z, Liu X, Wang X, Wang H, Ren J, Wang R (2022) J Alloy Compd 927:166934

    Article  CAS  Google Scholar 

  22. Pan Z, Li X, Yang C, Ji X (2023) J Colloid Interface Sci 634:460–468

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Xu S, Wei G, Li J, Ji Y, Klyui N, Izotov V, Han W (2017) Chem Eng J 317:1026–1036

    Article  CAS  Google Scholar 

  24. Gerard O, Numan A, Krishnan S, Khalid M, Subramaniam R, Kasi R (2022) Journal of Energy Storage 50:104283

    Article  Google Scholar 

  25. Diba M, Fam DWH, Boccaccini AR, Shaffer MSP (2016) Prog Mater Sci 82:83–117

    Article  CAS  Google Scholar 

  26. Yang Z, Liu A, Wang C, Liu F, He J, Li S, Wang J, You R, Yan X, Sun P, Duan Y, Lu G (2019) ACS Sensors 4:1261–1269

    Article  CAS  PubMed  Google Scholar 

  27. Yao M, Chen Y, Wang Z, Shao C, Dong J, Zhang Q, Zhang L, Zhao X (2020) Chem Eng J 395:124057

    Article  CAS  Google Scholar 

  28. Zhao M-Q, Ren CE, Alhabeb M, Anasori B, Barsoum MW, Gogotsi Y (2019) ACS Applied Energy Materials 2:1572–1578

    Article  CAS  Google Scholar 

  29. Lian S, Li G, Song F, Liu Z, Hu J, Tang K, **e X, Wu Z, Zhang N (2022) J Alloy Compd 901:163426

    Article  CAS  Google Scholar 

  30. Sikdar A, Dutta P, Deb SK, Majumdar A, Padma N, Ghosh S, Maiti UN (2021) Electrochim Acta 391:138959

    Article  CAS  Google Scholar 

  31. Song F, Hu J, Li G, Wang J, Chen S, **e X, Wu Z, Zhang N (2021) Nano-Micro Letters 14:37

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Lee Y, Kim SJ, Kim Y-J, Lim Y, Chae Y, Lee B-J, Kim Y-T, Han H, Gogotsi Y, Ahn CW (2020) Journal of Materials Chemistry A 8:573–581

    Article  CAS  Google Scholar 

  33. Lukatskaya MR, Bak S-M, Yu X, Yang X-Q, Barsoum MW, Gogotsi Y (2015) Adv Energy Mater 5:1500589

    Article  Google Scholar 

  34. Lukatskaya MR, Kota S, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P, Gogotsi Y (2017) Nat Energy 2:17105

    Article  ADS  CAS  Google Scholar 

  35. Yan Y, Zang L, Dou T, Li H, Sun L, Zhang Y (2021) Ceram Int 47:20310–20316

    Article  CAS  Google Scholar 

  36. Zheng Z, Wu W, Yang T, Wang E, Du Z, Hou X, Liang T, Wang H (2021) Journal of Advanced Ceramics 10:1061–1071

    Article  CAS  Google Scholar 

  37. Wang Z, Chen Y, Yao M, Dong J, Zhang Q, Zhang L, Zhao X (2020) J Power Sources 448:227398

    Article  CAS  Google Scholar 

  38. Yang L, Zheng W, Zhang P, Chen J, Tian WB, Zhang YM, Sun ZM (2018) J Electroanal Chem 830–831:1–6

    Google Scholar 

  39. Zhang J, Jiang D, Liao L, Cui L, Zheng R, Liu J (2022) Chem Eng J 429:132232

    Article  CAS  Google Scholar 

  40. Cheng G, Li Q, Xuan Z, Tang Z, Ding G, Wan X (2023) J Alloy Compd 960:170658

    Article  CAS  Google Scholar 

  41. Wang Y, Zhang M, Li Y, Ma T, Liu H, Pan D, Wang X, Wang A (2018) Electrochim Acta 290:12–20

    Article  CAS  Google Scholar 

  42. Liu T, Zhou Z, Guo Y, Guo D, Liu G (2019) Nat Commun 10:675

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou Z, Liu T, Khan AU, Liu G (2019) Science Advances 5: eaau6852

  44. Yi TF, Shi L, Han X, Wang F, Zhu Y, **e Y (2021) Energy & Environmental Materials 4:586–595

  45. Lv K, Zhang J, Zhao X, Kong N, Tao J, Zhou J (2022) Small 18:2202203

    Article  CAS  Google Scholar 

  46. Li G-R, Feng Z-P, Zhong J-H, Wang Z-L, Tong Y-X (2010) Macromolecules 43:2178–2183

    Article  ADS  CAS  Google Scholar 

  47. Wang Y, Wang X, Li X, Bai Y, **ao H, Liu Y, Liu R, Yuan G (2019) Adv Func Mater 29:1900326

    Article  Google Scholar 

  48. Yang C, Tang Y, Tian Y, Luo Y, He Y, Yin X, Que W (2018) Adv Func Mater 28:1705487

    Article  Google Scholar 

  49. Yao B, Chandrasekaran S, Zhang H, Ma A, Kang J, Zhang L, Lu X, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y (2020) Adv Mater 32:1906652

    Article  CAS  Google Scholar 

  50. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263–267

    Article  CAS  Google Scholar 

  51. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Adv Func Mater 27:1701264

    Article  Google Scholar 

  52. Li J, Chen J, Wang H, **ao X (2021) ChemElectroChem 8:648–655

    Article  CAS  Google Scholar 

  53. Radha N, Kanakaraj A, Manohar HM, Nidhi MR, Mondal D, Nataraj SK, Ghosh D (2019) Appl Surf Sci 481:892–899

    Article  ADS  Google Scholar 

  54. Chen W, Zhang D, Yang K, Luo M, Yang P, Zhou X (2021) Chem Eng J 413:127524

    Article  CAS  Google Scholar 

  55. Noh J, Yoon C-M, Kim YK, Jang J (2017) Carbon 116:470–478

    Article  CAS  Google Scholar 

  56. Zhu S, Göbel M, Formanek P, Simon F, Sommer M, Choudhury S (2021) Journal of Materials Chemistry A 9:14052–14063

    Article  CAS  Google Scholar 

  57. Li H, Liu Y, Lin S, Li H, Wu Z, Zhu L, Li C, Wang X, Zhu X, Sun Y (2021) J Power Sources 497:229882

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the Natural Science Foundation of Guangdong Province, China (no. 2021A1515010452, 2023A1515010357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aohong Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3505 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Pan, Z. & Ji, X. 3D porous Ti3C2Tx prepared on carbon cloth by electrophoretic co-deposition for enhanced supercapacitor performance. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05848-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05848-z

Keywords

Navigation