Log in

Achieve a high electrochemical oxidation activity by a self-assembled cermet composite anode with low Ni content for solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ni-based cermets are the most widely used anode materials for solid oxide fuel cells. Reducing the content of Ni is beneficial to anode stability but usually unfavorable for the catalytic activity. In this study, Ni-Ce0.8Sm0.2O2-δ anode with a low Ni content is synthesized through a polymer-directed evaporation-induced self-assembly strategy. Ni distributes evenly in the anode, resulting in an enlarged triple-phase boundary region and improved reactivity of lattice oxygen in the oxide phase. The anode containing 5 wt.% Ni possesses the highest amounts of oxygen vacancies and Ce3+/Ce4+ redox pairs that facilitates the charge transfer process, which is one of the rate-determining steps of anode reaction. Consequently, that anode shows the lowest polarization resistance of 0.014 Ω cm2 at 700 °C, much lower than those of other Ni-based anodes prepared through conventional techniques such as impregnation and solid-mixing. With that anode, a single cell supported by a 480-μm-thick Ce0.8Sm0.2O2-δ electrolyte layer exhibits the maximum power density of 270 mW cm−2 at 700 °C. The anode also shows a promising stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hesami H, Borji M, Rezapour J (2021) A comprehensive three-dimensional modeling of an internal reforming planar solid oxide fuel cell with different interconnect designs. J Solid State Electr 25(10–11):2639–2664

    Article  CAS  Google Scholar 

  2. Fasquelle D, Chi Z, Belakry S (2022) Impregnation of gadolinium-doped ceria backbone electrodes modified by addition of pore-formers for SOFC application. J Solid State Electr 27(3):695–703

    Article  Google Scholar 

  3. Sciazko A, Miyahara K, Komatsu Y, Shimura T, Jiao Z, Shikazono N (2019) Influence of initial powder morphology on polarization characteristics of nickel/gadolinium-doped-ceria solid oxide fuel cells electrode. J Electrochem Soc 166(2):F44–F52

    Article  CAS  Google Scholar 

  4. Ao G, Yan Y, Zhao P, Pan Z, Lv Z, Wang Z (2022) Enhanced redox and reoxidation tolerances of Ce0.8Gd0.2O1.9 electrolyte for Ni cermet anodes in single-chamber SOFCs. J Solid State Electr 26(3):865–873

    Article  CAS  Google Scholar 

  5. Xu Q, Guo Z, **a L, He Q, Li Z, Temitope Bello I, Zheng K, Ni M (2022) A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Convers Manage 253:115175

    Article  CAS  Google Scholar 

  6. Shaikh SPS, Muchtar A, Somalu MR (2015) A review on the selection of anode materials for solid-oxide fuel cells. Renewable Sustainable Energy Rev 51:1–8

    Article  CAS  Google Scholar 

  7. Fang X, Lin Z (2018) Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell. Appl Energy 229:63–68

    Article  CAS  Google Scholar 

  8. Nerat M (2020) A model of solid oxide fuel cell degradation on a microstructural level. Appl Sci 10(6):1906

    Article  CAS  Google Scholar 

  9. Komatsu Y, Sciazko A, Suzuki Y, Ouyang Z, Jiao Z, Shikazono N (2021) Operando observation of patterned nickel-gadolinium doped ceria solid oxide fuel cell anode. J Power Sources 516:230670

    Article  CAS  Google Scholar 

  10. Sreedhar I, Agarwal B, Goyal P, Agarwal A (2020) An overview of degradation in solid oxide fuel cells-potential clean power sources. J Solid State Electr 24(6):1239–1270

    Article  CAS  Google Scholar 

  11. Han Z, Dong H, Yang Y, Yang Z (2022) Achieving robust redox stability of SOFC through Ni-YSZ anode layer thinning and inert support mechanical compensation. ACS Appl Energy Mater 5(5):5822–5829

    Article  CAS  Google Scholar 

  12. Kim T, Kim HJ, Go D, Shin JW, Yang BC, Cho GY, Gür TM, An J (2022) Reactive sputtered Ni-SDC cermet alloy anode for low-temperature solid oxide fuel cell. J Alloys Compd 924:166332

    Article  CAS  Google Scholar 

  13. Jasinski P, Suzuki T, Petrovsky V, Anderson HU (2005) Nanocomposite nickel ceria cermet with low nickel content for anode supported SOFCs. Electrochem Solid-State Lett 8(4):A219–A221

    Article  CAS  Google Scholar 

  14. Weng X, Brett D, Yufit V, Shearing P, Brandon N, Reece M, Yan H, Tighe C, Darr JA (2010) Highly conductive low nickel content nano-composite dense cermets from nano-powders made via a continuous hydrothermal synthesis route. Solid State Ionics 181(17–18):827–834

    Article  CAS  Google Scholar 

  15. Park JH, Lee JH, Yoon KJ, Kim H, Ji HI, Yang S, Park S, Han SM, Son JW (2021) A nanoarchitectured cermet composite with extremely low Ni content for stable high-performance solid oxide fuel cells. Acta Mater 206:116580

    Article  CAS  Google Scholar 

  16. Choolaei M, Cai Q, Horri BA (2021) Green synthesis and characterisation of nanocrystalline NiO-GDC powders with low activation energy for solid oxide fuel cells. Ceram Int 47(23):32804–32816

    Article  CAS  Google Scholar 

  17. Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O (2019) A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloys Compd 781:984–1005

    Article  CAS  Google Scholar 

  18. Gautam M, Ahuja A, Sinha A, Sharma J, Patro PK, Venkatasubramanian A (2020) Synthesis and characterization of gadolinium-doped ceria and barium cerate-based composite electrolyte material for IT-SOFC. Bull Mater Sci 43(1):1–9

    Article  Google Scholar 

  19. Huang Z, Fan L, Hou N, Gan T, Gan J, Zhao Y, Li Y (2020) Improved activity of oxygen in Ni–Ce0.8Sm0.2O2-δ anode for solid oxide fuel cell with Pr do**. J Power Sources 451:227809

    Article  CAS  Google Scholar 

  20. Zhang Y, Huang Z, Gan T, Hou N, Fan L, Zhou X, Gao G, Li J, Zhao Y, Li Y (2021) Cu-Ce0.8Sm0.2O2-δ anode for electrochemical oxidation of methanol in solid oxide fuel cell: improved activity by La and Nd do**. Solid State Ionics 369:115728

    Article  CAS  Google Scholar 

  21. Gan T, Fan X, Liu Y, Wang C, Mei H, Fan L, Hou N, Zhao Y, Li Y (2020) A highly active Ni/Ce0.8Sm0.2O1.9 anode catalyst with a three-dimensionally ordered macroporous structure for solid oxide fuel cells. J Mater Chem A 8(16):7792–7800

    Article  CAS  Google Scholar 

  22. Zhang SL, Wang H, Yang T, Lu MY, Li CX, Li CJ, Barnett SA (2020) Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti, Fe)O3−δ-based fuel electrodes for electricity generation and hydrogen production. J Mater Chem A 8(48):25867–25879

    Article  CAS  Google Scholar 

  23. Zhang Y, Xu Y, Gan L (2021) Exsolved metallic iron nanoparticles in perovskite cathode to enhance CO2 electrolysis. J Solid State Electr 26(2):409–417

    Article  Google Scholar 

  24. Hou N, Yao T, Li P, Yao X, Gan T, Fan L, Wang J, Zhi X, Zhao Y, Li Y (2019) A-site ordered double perovskite with in situ exsolved core-shell nanoparticles as anode for solid oxide fuel cells. ACS Appl Mater Interfaces 11(7):6995–7005

    Article  CAS  PubMed  Google Scholar 

  25. Zhu T, Troiani HE, Mogni LV, Han M, Barnett SA (2018) Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution. Joule 2(3):478–496

    Article  CAS  Google Scholar 

  26. Osinkin DA, Antonova EP, Shubin KS, Bogdanovich NM (2021) Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1.95Fe1.4Ni0.1Mo0.5O6-δ promising electrode for solid state electrochemical devices. Electrochim Acta 369:137673

    Article  CAS  Google Scholar 

  27. Tan J, Lee D, Ahn J, Kim B, Kim J, Moon J (2018) Thermally driven in situ exsolution of Ni nanoparticles from (Ni, Gd)CeO2 for high-performance solid oxide fuel cells. J Mater Chem A 6(37):18133–18142

    Article  CAS  Google Scholar 

  28. **ong H, Zhou H, Qi C, Liu Z, Zhang L, Zhang L, Qiao ZA (2020) Polymer-oriented evaporation induced self-assembly strategy to synthesize highly crystalline mesoporous metal oxides. Chem Eng J 398:125527

    Article  CAS  Google Scholar 

  29. Gan T, Ding G, Chen B, Zhi X, Li P, Yao X, Hou N, Fan L, Zhao Y, Li Y (2019) Effects of manganese oxides on the activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells with methanol as the fuel. Catal Today 330:222–227

    Article  CAS  Google Scholar 

  30. Li J, Fan L, Hou N, Zhao Y, Li Y (2022) Solid oxide fuel cell with a spin-coated yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolyte. RSC Adv 12(21):13220–13227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Am SA, Raharjo J, Anwar M, Khaerudini DS, Muchtar A, Spiridigliozzi L, Somalu MR (2020) Carbonate-based lanthanum strontium cobalt ferrite (LSCF)-samarium-doped ceria (SDC) composite cathode for low-temperature solid oxide fuel cells. Appl Sci 10(11):3761

    Article  Google Scholar 

  32. Jurado L, Papaefthimiou V, Thomas S, Roger AC (2021) Low temperature toluene and phenol abatement as tar model molecules over Ni-based catalysts: influence of the support and the synthesis method. Appl Catal B 297:120479

    Article  CAS  Google Scholar 

  33. Zhou R, Mohamedali M, Ren Y, Lu Q, Mahinpey N (2022) Facile synthesis of multi-layered nanostructured Ni/CeO2 catalyst plus in-situ pre-treatment for efficient dry reforming of methane. Appl Catal B 316:121696

    Article  CAS  Google Scholar 

  34. Bian Z, Chan YM, Yu Y, Kawi S (2020) Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study. Catal Today 347:31–38

    Article  CAS  Google Scholar 

  35. Cesario MR, Souza GS, Loureiro FJA, Araújo AJM, Grilo JPF, Aouad S, Tidahy HL, Macedo DA, Fagg DP, Gennequin C, Abi-Aad E (2021) Synthesis of Co–Ni and Cu–Ni based-catalysts for dry reforming of methane as potential components for SOFC anodes. Ceram Int 47(23):33191–33201

    Article  CAS  Google Scholar 

  36. Escudero MJ, Valero C, Cauqui MÁ, Goma D, Yeste MP (2022) Ni-Ce-ZrO2 system as anode material for direct internal reforming biogas solid oxide fuel cells. Fuel 322:124247

    Article  CAS  Google Scholar 

  37. Chagas CA, Souza EF, Manfro RL, Landi SM, Souza MMVM, Schmal M (2016) Copper as promoter of the NiO–CeO2 catalyst in the preferential CO oxidation. Appl Catal B 182:257–265

    Article  CAS  Google Scholar 

  38. Torknik FS, Keyanpour-Rad M, Maghsoudipour A, Choi GM (2014) Effect of microstructure refinement on performance of Ni/Ce0.8Gd0.2O1.9 anodes for low temperature solid oxide fuel cell. Ceram Int 40(1):1341–1350

    Article  CAS  Google Scholar 

  39. Zhou G, Liu H, Cui K, Jia A, Hu G, Jiao Z, Liu Y, Zhang X (2016) Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Appl Surf Sci 383:248–252

    Article  CAS  Google Scholar 

  40. Zhao X, Li H, Zhang J, Shi L, Zhang D (2016) Design and synthesis of NiCe@m-SiO2 yolk-shell framework catalysts with improved coke- and sintering-resistance in dry reforming of methane. Int J Hydrogen Energy 41(4):2447–2456

    Article  CAS  Google Scholar 

  41. Hartmann P, Brezesinski T, Sann J, Lotnyk A, Eufinger JP, Kienle L, Janek J (2013) Defect chemistry of oxide nanomaterials with high surface area: ordered mesoporous thin films of the oxygen storage catalyst CeO2-ZrO2. ACS Nano 7(4):2999–3013

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Zhou W, Yu J, Chen Y, Liu M, Shao Z (2016) Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem Mater 28(6):1691–1697

    Article  CAS  Google Scholar 

  43. Zhang X, Pei C, Chang X, Chen S, Liu R, Zhao ZJ, Mu R, Gong J (2020) FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J Am Chem Soc 142(26):11540–11549

    Article  CAS  PubMed  Google Scholar 

  44. Zhi X, Gan T, Hou N, Fan L, Yao T, Wang J, Zhao Y, Li Y (2019) ZnO-promoted surface diffusion on NiO-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cell. J Power Sources 423:290–296

    Article  CAS  Google Scholar 

  45. Hou N, Gan J, Yan Q, Zhao Y, Li Y (2022) Improved electrochemical oxidation kinetics of La0.5Ba0.5FeO3-δ anode for solid oxide fuel cells with fluorine do**. J Power Sources 521:230932

    Article  CAS  Google Scholar 

  46. Park BK, Scipioni R, Cox D, Barnett SA (2020) Enhancement of Ni-(Y2O3)0.08(ZrO2)0.92 fuel electrode performance by infiltration of Ce0.8Gd0.2O2−δ nanoparticles. J Mater Chem A 8(7):4099–4106

    Article  CAS  Google Scholar 

  47. Athanasiou M, Niakolas DK, Bebelis S, Neophytides SG (2020) Steam effect on Gerischer impedance response of a Ni/GDC|YSZ|LSM fuel cell anode. J Power Sources 448:227404

    Article  CAS  Google Scholar 

  48. Grosselindemann C, Russner N, Dierickx S, Wankmüller F, Weber A (2021) Deconvolution of gas diffusion polarization in Ni/gadolinium-doped ceria fuel electrodes. J Electrochem Soc 168(12):124506

    Article  CAS  Google Scholar 

  49. Osinkin DA (2020) Complementary effect of ceria on the hydrogen oxidation kinetics on Ni-Ce0.8Sm0.2O2-δ anode. Electrochim Acta 330:135257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China under contract number 22075205 and the support of Tian** Municipal Science and Technology Commission under contract number 19JCYBJC21700 are gratefully acknowledged. The work has been also supported by the Program of Introducing Talents to the University Disciplines under file number B06006, and the Program for Changjiang Scholars and Innovative Research Teams in Universities under file number IRT 0641.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Zhang, J., Yang, Z. et al. Achieve a high electrochemical oxidation activity by a self-assembled cermet composite anode with low Ni content for solid oxide fuel cells. J Solid State Electrochem 27, 2727–2736 (2023). https://doi.org/10.1007/s10008-023-05573-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05573-z

Keywords

Navigation