Log in

Improvement on mixed-potential type ammonia sensor by a Cr2O3 gas-phase catalyst layer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mixed-potential type ammonia sensors based on yttria-stabilized zirconia are promising devices in NOx reducing system for high-temperature exhaust. However, selectivity is a critical issue that should be urgently addressed. Herein, a novel bilayer Cr2O3|In2O3 sensing electrode (SE) was designed to improve the selectivity of the ammonia sensor, in which an additional Cr2O3 layer was deposited on In2O3 SE. The selectivity was examined in NH3, CO, NO and NO2. Finally, the sensor with the bilayer Cr2O3|In2O3 SE exhibits an improvement of NH3 selectivity at 600 °C, which is attributed to the Cr2O3 layer catalysing the removal of CO and NOx before the gases reach the triple-phase boundaries (TPBs). Furthermore, the mixed-potential model of the NH3 sensor with the bilayer SE was identified using the polarization curves obtained in different concentrations of NH3. Additionally, the proposed sensor displayed a good repeatability and resistances to CO2 and H2O. This innovative bilayer Cr2O3|In2O3 SE is expected to be applied in high-temperature NH3 detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

NOx :

Nitrogen oxides

RE:

Reference electrode

SCR:

Selective catalytic reduction

SE:

Sensing electrode

SEM:

Scanning electron microscopy

TPB:

Triple-phase boundary

YSZ:

Yttria-stabilized zirconia

References

  1. Lu Q, Huang L, Li W, Wang T, Yu H, Hao X, Liang X, Liu F, Sun P, Lu G (2021) Mixed-potential ammonia sensor using Ag decorated FeVO4 sensing electrode for automobile in-situ exhaust environment monitoring. Sens Actuat B Chem 348. https://doi.org/10.1016/j.snb.2021.130697

  2. Zou J, Zheng Y, Li J, Zhan Z, Jian J (2015) Potentiometric NO2 sensors based on thin stabilized zirconia electrolytes and asymmetric (La0.8Sr0.2)0.95MnO3 electrodes. Sensors 15:17558–17571. https://doi.org/10.3390/s150717558

  3. Sekhar PK, Brosha EL, Mukundan R, Li WX, Nelson MA, Palanisamy P, Garzon FH (2010) Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control. Sens Actuators B Chem 144:112–119. https://doi.org/10.1016/j.snb.2009.10.045

    Article  CAS  Google Scholar 

  4. Shah AN, Ge Y, Tan J, Liu Z, He C, Zeng T (2012) Characterization of polycyclic aromatic hydrocarbon emissions from diesel engine retrofitted with selective catalytic reduction and continuously regenerating trap. J Environ Sci 24:1449–1456. https://doi.org/10.1016/s1001-0742(11)60974-1

    Article  CAS  Google Scholar 

  5. Bhardwaj A, Kim IH, Mathur L, Park JY, Song SJ (2021) Ultrahigh-sensitive mixed-potential ammonia sensor using dual-functional NiWO4 electrocatalyst for exhaust environment monitoring. J Hazard Mater 403:123797. https://doi.org/10.1016/j.jhazmat.2020.123797

  6. Wang Z, Shan L, Zhou Y, Yuan T, Zhang S, **e G, Gao W, ** Q, Jian J, Zou J (2022) Amperometric ammonia sensors for low detection limit with BaZr(1-x)YxO3-δ proton electrolytes. J Electroana Chem 915:116362. https://doi.org/10.1016/j.jelechem.2022.116362

  7. Tsui L-K, Benavidez A, Palanisamy P, Evans L, Garzon F (2018) Automatic signal decoding and sensor stability of a 3-electrode mixed-potential sensor for NOx/NH3 quantification. Electrochim Acta 283:141–148. https://doi.org/10.1016/j.electacta.2018.06.133

    Article  CAS  Google Scholar 

  8. Schönauer D, Nieder T, Wiesner K, Fleischer M, Moos R (2011) Investigation of the electrode effects in mixed potential type ammonia exhaust gas sensors. Solid State Ion 192:38–41. https://doi.org/10.1016/j.ssi.2010.03.028

    Article  CAS  Google Scholar 

  9. Yuan Y, Wang B, Wang C, Li X, Huang J, Zhang H, **a F, **ao J (2017) Effects of CoFe2O4 electrode microstructure on the sensing properties for mixed potential NH3 sensor. Sens Actuat B Chem 239:462–466. https://doi.org/10.1016/j.snb.2016.07.171

    Article  CAS  Google Scholar 

  10. Prasad AK, Kubinski DJ, Gouma PI (2003) Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection. Sens Actuat B Chem 93:25–30. https://doi.org/10.1016/s0925-4005(03)00336-8

    Article  CAS  Google Scholar 

  11. Guo P, Pan H (2006) Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens Actuat B Chem 114:762–767. https://doi.org/10.1016/j.snb.2005.07.040

    Article  CAS  Google Scholar 

  12. Shimizu K, Chinzei I, Nishiyama H, Kakimoto S, Sugaya S, Matsutani W, Satsuma A (2009) Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sens Actuat B Chem 141:410–416. https://doi.org/10.1016/j.snb.2009.06.048

    Article  CAS  Google Scholar 

  13. Dhivya P, Prasad AK, Sridharan M (2014) Nanostructured TiO2 films: enhanced NH3 detection at room temperature. Ceram Int 40:409–415. https://doi.org/10.1016/j.ceramint.2013.06.016

    Article  CAS  Google Scholar 

  14. Wu Q, Zheng Y, Jian J, Wang J (2016) Gas sensing performance of ion-exchanged Y zeolites as an impedimetric ammonia sensor. Ionics 23:751–758. https://doi.org/10.1007/s11581-016-1849-0

    Article  CAS  Google Scholar 

  15. Auckenthaler TS, Onder CH, Geering HP, Frauhammer J (2004) Modeling of a three-way catalytic converter with respect to fast transients of λ-sensor relevant exhaust gas components. Ind Eng Chem Res 43:4780–4788. https://doi.org/10.1021/ie034242u

    Article  CAS  Google Scholar 

  16. Miura N, Sato T, Anggraini SA, Ikeda H, Zhuiykov S (2014) A review of mixed-potential type zirconia-based gas sensors. Ionics 20:901–925. https://doi.org/10.1007/s11581-014-1140-1

    Article  CAS  Google Scholar 

  17. Sato T, Ikeda H, Miura N (2014) Mixed-potential type zirconia-based NH3 sensor using SnO2-disk sensing-electrode attached with sputtered Au. ECS Electrochem Lett 3:B13–B15. https://doi.org/10.1149/2.004406eel

    Article  CAS  Google Scholar 

  18. Meng W, Dai L, Zhu J, Li Y, Meng W, Zhou H, Wang L (2016) A novel mixed potential NH3 sensor based on TiO2@WO3 core-shell composite sensing electrode. Electrochim Acta 193:302–310. https://doi.org/10.1016/j.electacta.2016.02.028

    Article  CAS  Google Scholar 

  19. Abkenar GN, Rieu M, Breuil P, Viricelle JP (2021) Development of a selective ammonia YSZ-based sensor and modeling of its response. Sens Actuat B Chem 338. https://doi.org/10.1016/j.snb.2021.129833

  20. Dai L, Yang G, Zhou H, He Z, Li Y, Wang L (2016) Mixed potential NH3 sensor based on Mg-doped lanthanum silicate oxyapatite. Sens Actuat B Chem 224:356–363. https://doi.org/10.1016/j.snb.2015.10.071

    Article  CAS  Google Scholar 

  21. Wang C, Yang B, Xu J, **a F, **ao J (2019) Effects of CeVO4 electrode morphology and oxygen content on ammonia sensing properties for potentiometric sensor. Sens Actuat B Chem 299. https://doi.org/10.1016/j.snb.2019.126863

  22. Wang C, Li X, **a F, Zhang H, **ao J (2016) Effect of V2O5-content on electrode catalytic layer morphology and mixed potential ammonia sensor performance. Sens Actuat B Chem 223:658–663. https://doi.org/10.1016/j.snb.2015.09.145

    Article  CAS  Google Scholar 

  23. Wama R, Plashnitsa VV, Elumalai P, Utiyama M, Miura N (2010) Impedancemetric zirconia-based sensor attached with laminated-oxide sensing-electrode aiming at highly sensitive and selective detection of propene in atmospheric air. Solid State Ion 181:359–363. https://doi.org/10.1016/j.ssi.2010.01.010

    Article  CAS  Google Scholar 

  24. Elumalai P, Plashnitsa VV, Ueda T, Miura N (2008) Sensing characteristics of mixed-potential-type zirconia-based sensor using laminated-oxide sensing electrode. Electrochem Commun 10:745–748. https://doi.org/10.1016/j.elecom.2008.02.028

    Article  CAS  Google Scholar 

  25. Schönauer-Kamin D, Fleischer M, Moos R (2014) Influence of the V2O5 content of the catalyst layer of a non-Nernstian NH3 sensor. Solid State Ion 262:270–273. https://doi.org/10.1016/j.ssi.2013.08.035

    Article  CAS  Google Scholar 

  26. Yamaguchi M, Anggraini SA, Fujio Y, Sato T, Breedon M, Miura N (2013) Stabilized zirconia-based sensor utilizing SnO2-based sensing electrode with an integrated Cr2O3 catalyst layer for sensitive and selective detection of hydrogen. Int J Hydrog Energy 38:305–312. https://doi.org/10.1016/j.ijhydene.2012.10.049

    Article  CAS  Google Scholar 

  27. Lee I, Jung B, Park J, Lee C, Hwang J, Park CO (2013) Mixed potential NH3 sensor with LaCoO3 reference electrode. Sens Actuat B Chem 176:966–970. https://doi.org/10.1016/j.snb.2012.09.009

    Article  CAS  Google Scholar 

  28. Dai L, Liu Y, Meng W, Yang G, Zhou H, He Z, Li Y, Wang L (2016) Ammonia sensing characteristics of La10Si5MgO26-based sensors using In2O3 sensing electrode with different morphologies and CuO reference electrode. Sens Actuat B Chem 228:716–724. https://doi.org/10.1016/j.snb.2016.01.106

    Article  CAS  Google Scholar 

  29. ** H, Huang Y, Jian J (2015) Sensing mechanism of the zirconia-based highly selective NO sensor by using a plate-like Cr2O3 sensing electrode. Sens Actuat B Chem 219:112–118. https://doi.org/10.1016/j.snb.2015.04.123

    Article  CAS  Google Scholar 

  30. Elumalai P, Plashnitsa VV, Ueda T, Hasei M, Miura N (2007) Dependence of NO2 sensitivity on thickness of oxide-sensing electrodes for mixed-potential-type sensor using stabilized zirconia. Ionics 13:387–393. https://doi.org/10.1007/s11581-006-0063-x

    Article  CAS  Google Scholar 

  31. Elumalai P, Hasei M, Miura N (2006) Influence of thickness of Cr2O3 sensing-electrode on sensing characteristics of mixed-potential-type NO2 sensor based on stabilized zirconia. Electrochemistry 74:197–201. https://doi.org/10.5796/electrochemistry.74.197

    Article  CAS  Google Scholar 

  32. Li F, ** H, Wang J, Zou J, Jian J (2017) Selective sensing of gas mixture via a temperature modulation approach: new strategy for potentiometric gas sensor obtaining satisfactory discriminating features. Sensors 17. https://doi.org/10.3390/s17030573

  33. ** H, Breedon M, Plashnitsa VV, Miura N (2012) Working mechanism of novel Mn-based reference electrode for solid-state electrochemical gas sensors. J Electrochem Soc 159:B801–B810. https://doi.org/10.1149/2.035210jes

    Article  CAS  Google Scholar 

  34. Sato T, Breedon M, Miura N (2012) Improvement of toluene selectivity via the application of an ethanol oxidizing catalytic cell upstream of a YSZ-based sensor for air monitoring applications. Sensors 12:4706–4714. https://doi.org/10.3390/s120404706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsitron J, Kreller CR, Sekhar PK, Mukundan R, Garzon FH, Brosha EL, Morozova AV (2014) Bayesian decoding of the ammonia response of a zirconia-based mixed-potential sensor in the presence of hydrocarbon interference. Sens Actuat B Chem 192:283–293. https://doi.org/10.1016/j.snb.2013.10.115

    Article  CAS  Google Scholar 

  36. Zou J, Liu X, ** H, Zhan Z, Jian J (2015) NO2 sensing properties of electrode-supported sensor by tape casting and co-firing method. Ionics 21:2655–2662. https://doi.org/10.1007/s11581-015-1430-2

    Article  CAS  Google Scholar 

  37. Yang B, Wang C, **ao R, Yu HY, Huang CQ, Wang JX, Xu JL, Liu HM, **a F, **ao JZ (2019) High NH3 selectivity of NiFe2O4 sensing electrode for potentiometric sensor at elevated temperature. Anal Chim Acta 1089:165–173. https://doi.org/10.1016/j.aca.2019.09.006

    Article  CAS  PubMed  Google Scholar 

  38. Kalyakin A, Volkov A, Vylkov A, Gorbova E, Medvedev D, Demin A, Tsiakaras P (2018) An electrochemical method for the determination of concentration and diffusion coefficient of ammonia-nitrogen gas mixtures. J Electroana Chem 808:133–136. https://doi.org/10.1016/j.jelechem.2017.12.001

    Article  CAS  Google Scholar 

  39. Li X, Wang C, Huang J, Yuan Y, Wang B, Zhang H, **a F, **ao J (2016) The effects of Cu-content on Mg2CuxFe1O3.5+x electrodes for YSZ-based mixed-potential type NH3 sensors. Ceram Int 42:9363–9370. https://doi.org/10.1016/j.ceramint.2016.02.118

  40. Wang L, Meng W, He Z, Meng W, Li Y, Dai L (2018) Enhanced selective performance of mixed potential ammonia gas sensor by Au nanoparticles decorated CeVO4 sensing electrode. Sens Actuat B Chem 272:219–228. https://doi.org/10.1016/j.snb.2018.05.156

    Article  CAS  Google Scholar 

  41. Liu F, Li S, He J, Wang J, You R, Yang Z, Zhao L, Sun P, Yan X, Liang X, Chuai X, Lu G (2019) Highly selective and stable mixed-potential type gas sensor based on stabilized zirconia and Cd2V2O7 sensing electrode for NH3 detection. Sens Actuat B Chem 279:213–222. https://doi.org/10.1016/j.snb.2018.09.024

    Article  CAS  Google Scholar 

  42. Park J-Y, Azad A-M, Song S-J, Wachsman ED (2010) Titania-based miniature potentiometric carbon monoxide gas sensors with high sensitivity. J Am Ceram Soc 93:742–749. https://doi.org/10.1111/j.1551-2916.2009.03446.x

    Article  CAS  Google Scholar 

  43. Macam ER, Blackburn BM, Wachsman ED (2011) The effect of La2CuO4 sensing electrode thickness on a potentiometric NOx sensor response. Sens Actuat B Chem 157:353–360. https://doi.org/10.1016/j.snb.2011.05.014

    Article  CAS  Google Scholar 

  44. Elumalai P, Zosel J, Guth U, Miura N (2009) NO2 sensing properties of YSZ-based sensor using NiO and Cr-doped NiO sensing electrodes at high temperature. Ionics 15:405–411. https://doi.org/10.1007/s11581-009-0354-0

    Article  CAS  Google Scholar 

  45. Elumalai P, Plashnitsa V, Fujio Y, Miura N (2008) Stabilized zirconia-based sensor attached with NiO/Au sensing electrode aiming for highly selective detection of ammonia in automobile exhausts. Electrochem Solid-State Lett 11:J79–J81. https://doi.org/10.1149/1.2971171

    Article  CAS  Google Scholar 

  46. Lu Q, Huang L, Hao X, Li W, Wang B, Wang T, Liang X, Liu F, Wang C, Lu G (2021) Mixed potential type NH3 sensor based on YSZ solid electrolyte and metal oxides (NiO, SnO2, WO3) modified FeVO4 sensing electrodes. Sens Actuat B Chem 343. https://doi.org/10.1016/j.snb.2021.130043

  47. Meng W, Wang L, Li Y, Zhou H, He Z, Meng W, Dai L (2019) Mixed-potential type NH3 sensor based on CoWO4-PdO sensing electrode prepared by self-demixing. Electrochim Acta 321. https://doi.org/10.1016/j.electacta.2019.134668

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (61971251), and China Postdoctoral Science Foundation (grant no. 2019M663474), Natural Science Foundation of Zhejiang (grant no. LGG22F010017, LY18F010009), Natural Science Foundation of Ningbo (grant no. 2018A610002) and Scientific Research Foundation of Education Department of Zhejiang Province (grant no. Y201942817).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zou or Jiawen Jian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zou, J., Li, F. et al. Improvement on mixed-potential type ammonia sensor by a Cr2O3 gas-phase catalyst layer. J Solid State Electrochem 27, 1011–1020 (2023). https://doi.org/10.1007/s10008-023-05376-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05376-2

Keywords

Navigation