Log in

CuWO4|MnWO4 heterojunction thin film with improved photoelectrochemical and photocatalytic properties using simulated solar irradiation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we report the synthesis of CuWO4, MnWO4, and FTO|CuWO4|MnWO4 as type II heterojunction thin film prepared by the drop-casting method. These thin films were synthesized by microwave-hydrothermal method with pure phase formation confirmed by X-ray diffraction (XRD), micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The photoelectrochemical response of these films was investigated under simulated illumination with AM 1.5 G type filter. The heterojunction displayed photocurrent density values two times higher than the FTO|CuWO4 film, reaching 39 μA/cm2 at 1.23 V versus normal hydrogen electrode. Optical and electrochemical characterizations revealed superior visible light absorption and lower charge transfer resistance for the FTO|CuWO4|MnWO4 heterojunction thin film. Low photoluminescence emission and transient photocurrent data confirmed a decreased electronic charge transfer between the valence and the conduction band, besides a reduced electron–hole recombination rate for the FTO|CuWO4|MnWO4 heterojunction film. Mott-Schottky photocurrent response investigation revealed that the FTO|CuWO4|MnWO4 heterojunction thin film can be considered an excellent photoanode for photoelectrocatalytic applications under solar irradiation. Finally, the heterojunction exhibited better performance for the photodegradation of Rhodamine B (RhB), corresponding to 55.5% at 165 min.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ismael M (2020) A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Sol Energy 211:522–546. https://doi.org/10.1016/j.solener.2020.09.073

    Article  CAS  Google Scholar 

  2. Sierra J, Suárez-Collado Á (2021) Understanding economic, social, and environmental sustainability challenges in the Global South. Sustainability 13:7201. https://doi.org/10.3390/su13137201

    Article  Google Scholar 

  3. Castellar JAC, Popartan LA, Pueyo-Ros J et al (2021) Nature-based solutions in the urban context: terminology, classification and scoring for urban challenges and ecosystem services. Sci Total Environ 779:146237. https://doi.org/10.1016/j.scitotenv.2021.146237

    Article  CAS  PubMed  Google Scholar 

  4. Makhonko NI, Plotnikova YA, Sorokina YV et al (2021) International environmental challenges of solar energy production as an integral part of modern green energy. IOP Conf Ser Earth Environ Sci 723:052036. https://doi.org/10.1088/1755-1315/723/5/052036

    Article  Google Scholar 

  5. Zhou M, Guo Z, Song Q et al (2019) Improved photoelectrochemical response of CuWO4/BiOI p-n heterojunction embedded with plasmonic Ag nanoparticles. Chem Eng J 370:218–227. https://doi.org/10.1016/j.cej.2019.03.193

    Article  CAS  Google Scholar 

  6. Abdelnasser S, Al Sakkaf R, Palmisano G (2021) Environmental and energy applications of TiO2 photoanodes modified with alkali metals and polymers. J Environ Chem Eng 9:104873. https://doi.org/10.1016/j.jece.2020.104873

    Article  CAS  Google Scholar 

  7. Krysiak OA, Junqueira JRC, Conzuelo F et al (2021) Importance of catalyst–photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes. J Solid State Electrochem 25:173–185. https://doi.org/10.1007/s10008-020-04636-9

    Article  CAS  Google Scholar 

  8. Liu XY, Li J (2021) S-scheme heterojunction ZnO /g-C3N4 shielding polyester fiber composites for. Semicond Sci Technol 36:045025. https://doi.org/10.1088/1361-6641/abea6e

    Article  CAS  Google Scholar 

  9. Wu M, Lei H, Chen J, Dong X (2021) Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J Colloid Interface Sci 587:883–890. https://doi.org/10.1016/j.jcis.2020.11.049

    Article  CAS  PubMed  Google Scholar 

  10. Kusior A, Wnuk A, Trenczek-Zajac A et al (2015) TiO2 nanostructures for photoelectrochemical cells (PECs). Int J Hydrogen Energy 40:4936–4944. https://doi.org/10.1016/j.ijhydene.2015.01.103

    Article  CAS  Google Scholar 

  11. de BritoCorradini JFPG, Zanoni MVB et al (2021) The influence of metallic Bi in BiVO4 semiconductor for artificial photosynthesis. J Alloys Compd 851:156–912. https://doi.org/10.1016/j.jallcom.2020.156912

    Article  CAS  Google Scholar 

  12. Resende ALS, Costa AGR, Lima AEB et al (2021) An investigation of photovoltaic devices based on p-type Cu2O and n-type γ-WO3 junction through an electrolyte solution containing a redox pair. Int J Energy Res 45:2797–2809. https://doi.org/10.1002/er.5974

    Article  CAS  Google Scholar 

  13. Costa GS, Costa MJS, Oliveira HG et al (2020) Effect of the applied potential condition on the photocatalytic properties of Fe2O3|WO3 heterojunction films. J Inorg Organomet Polym Mater 30:2851–2862. https://doi.org/10.1007/s10904-019-01429-0

    Article  CAS  Google Scholar 

  14. Moura JPC, Reis RYN, Lima AEB et al (2020) Improved photoelectrocatalytic properties of ZnO/CuWO4 heterojunction film for RhB degradation. J Photochem Photobiol A Chem 401:112778. https://doi.org/10.1016/j.jphotochem.2020.112778

    Article  CAS  Google Scholar 

  15. Deng J, Zhuo Q, Lv X (2019) Hierarchical TiO 2 /Fe 2 O 3 heterojunction photoanode for improved photoelectrochemical water oxidation. J Electroanal Chem 835:287–292. https://doi.org/10.1016/j.jelechem.2019.01.056

    Article  CAS  Google Scholar 

  16. Liu Z, Song Q, Zhou M et al (2019) Synergistic enhancement of charge management and surface reaction kinetics by spatially separated cocatalysts and p-n heterojunctions in Pt/CuWO4/Co3O4 photoanode. Chem Eng J 374:554–563. https://doi.org/10.1016/j.cej.2019.05.191

    Article  CAS  Google Scholar 

  17. Silva FCM, Silva LKR, Santos AGD et al (2020) Structural refinement, morphological features, optical properties, and adsorption capacity of α-Ag2WO4 nanocrystals/SBA-15 mesoporous on rhodamine B Dye. J Inorg Organomet Polym Mater 30:3626–3645. https://doi.org/10.1007/s10904-020-01560-3

    Article  CAS  Google Scholar 

  18. Jiang Z, Zhang F, Shen L et al (2021) Facile pH-controlled synthesis of MnWO4 nanoparticles and nanorods and their heterogeneous Fenton-like catalytic activity. Mater Lett 293:129662. https://doi.org/10.1016/j.matlet.2021.129662

    Article  CAS  Google Scholar 

  19. Rosal FJO, Gouveia AF, Sczancoski JC et al (2018) Electronic structure, growth mechanism, and sonophotocatalytic properties of sphere-like self-assembled NiWO4 nanocrystals. Inorg Chem Commun 98:34–40. https://doi.org/10.1016/j.inoche.2018.10.001

    Article  CAS  Google Scholar 

  20. Rani BJ, Ravi G, Ravichandran S et al (2018) Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications. Appl Nanosci 8:1241–1258. https://doi.org/10.1007/s13204-018-0780-2

    Article  CAS  Google Scholar 

  21. Roca RA, Sczancoski JC, Nogueira IC et al (2015) Facet-dependent photocatalytic and antibacterial properties of α-Ag2WO4 crystals: combining experimental data and theoretical insights. Catal Sci Technol 5:4091–4107. https://doi.org/10.1039/c5cy00331h

    Article  CAS  Google Scholar 

  22. Raizada P, Sharma S, Kumar A et al (2020) Performance improvement strategies of CuWO4 photocatalyst for hydrogen generation and pollutant degradation. J Environ Chem Eng 8:104230. https://doi.org/10.1016/j.jece.2020.104230

    Article  CAS  Google Scholar 

  23. Lima AEB, Reis RYN, Ribeiro LS et al (2021) Microwave-assisted hydrothermal synthesis of CuWO4-palygorskite nanocomposite for enhanced visible photocatalytic response. J Alloys Compd 863:158731. https://doi.org/10.1016/j.jallcom.2021.158731

    Article  CAS  Google Scholar 

  24. Ding W, Wu X, Lu Q (2019) Structure and photocatalytic activity of thin-walled CuWO4 nanotubes: An experimental and DFT study. Mater Lett 253:323–326. https://doi.org/10.1016/j.matlet.2019.06.109

    Article  CAS  Google Scholar 

  25. Le Minh TN, Trung DQ, Van Thuan D et al (2020) The advanced photocatalytic performance of V doped CuWO4 for water splitting to produce hydrogen. Int J Hydrogen Energy 45:18186–18194. https://doi.org/10.1016/j.ijhydene.2019.06.132

    Article  CAS  Google Scholar 

  26. Hao Z, Liu Z, Li Y et al (2020) Enhanced photoelectrochemical performance of 2D core-shell WO3/CuWO4 uniform heterojunction via in situ synthesis and modification of Co-Pi co-catalyst. Int J Hydrogen Energy 45:16550–16559. https://doi.org/10.1016/j.ijhydene.2020.04.135

    Article  CAS  Google Scholar 

  27. Low J, Yu J, Jaroniec M et al (2017) Heterojunction photocatalysts. Adv Mater 29:1–20. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  28. Yan X, Liu K, Shi W (2017) Facile synthesis of CdS/MnWO4 heterojunction with enhanced visible-light-driven photocatalytic activity and mechanism investigation. Colloids Surf A Physicochem Eng Asp 520:138–145. https://doi.org/10.1016/j.colsurfa.2017.01.065

    Article  CAS  Google Scholar 

  29. Joaquín-Morales MG, Fuentes AF, Montemayor SM et al (2019) Synthesis conditions effect on the of photocatalytic properties of MnWO4 for hydrogen production by water splitting. Int J Hydrogen Energy 44:12390–12398. https://doi.org/10.1016/j.ijhydene.2018.10.075

    Article  CAS  Google Scholar 

  30. Jiang YN, Liu BD, Yang WJ et al (2016) New strategy for the in situ synthesis of single-crystalline MnWO4/TiO2 photocatalysts for efficient and cyclic photodegradation of organic pollutants. CrystEngComm 18:1832–1841. https://doi.org/10.1039/c5ce02445e

    Article  CAS  Google Scholar 

  31. Askari N, Beheshti M, Mowla D, Farhadian M (2020) Synthesis of CuWO4/Bi2S3 Z-scheme heterojunction with enhanced cephalexin photodegradation. J Photochem Photobiol A Chem 394:112463. https://doi.org/10.1016/j.jphotochem.2020.112463

    Article  CAS  Google Scholar 

  32. Ramezanalizadeh H, Manteghi F (2017) Design and development of a novel BiFeO3/CuWO4 heterojunction with enhanced photocatalytic performance for the degradation of organic dyes. J Photochem Photobiol A Chem 338:60–71. https://doi.org/10.1016/j.jphotochem.2017.02.004

    Article  CAS  Google Scholar 

  33. My Hang TT, Thao Vy NH, Hanh NT et al (2021) Facile synthesis of copper tungstate (CuWO4) for novel photocatalytic degradation of tetracycline under visible light. Sustain Chem Pharm 21:100407. https://doi.org/10.1016/j.scp.2021.100407

    Article  Google Scholar 

  34. Guo M, Wang G, Zhao Y et al (2021) Preparation of Nano-ZrO2 powder via a microwave-assisted hydrothermal method. Ceram Int 47:12425–12432. https://doi.org/10.1016/j.ceramint.2021.01.099

    Article  CAS  Google Scholar 

  35. Meng LY, Wang B, Ma MG, Lin KL (2016) The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem 1–2:63–83. https://doi.org/10.1016/j.mtchem.2016.11.003

    Article  Google Scholar 

  36. Lima AEB, Costa MJS, Santos RS et al (2017) Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim Acta 256:139–145. https://doi.org/10.1016/j.electacta.2017.10.010

    Article  CAS  Google Scholar 

  37. Zhang H, Yilmaz P, Ansari JO et al (2015) Incorporation of Ag nanowires in CuWO4 for improved visible light-induced photoanode performance. J Mater Chem A 3:9638–9644. https://doi.org/10.1039/c4ta07213h

    Article  CAS  Google Scholar 

  38. Souza ELS, Sczancoski JC, Nogueira IC et al (2017) Structural evolution, growth mechanism and photoluminescence properties of CuWO4 nanocrystals. Ultrason Sonochem 38:256–270. https://doi.org/10.1016/j.ultsonch.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  39. Kihlborg L, Gebert E (1970) CuWO4, a distorted Wolframite-type structure. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 26:1020–1026. https://doi.org/10.1107/s0567740870003515

    Article  CAS  Google Scholar 

  40. Park SH, Behal D, Pedersen B (2018) The origin of the polar symmetry in huebnerite-type multiferroics. Phys B Condens Matter 551:118–121. https://doi.org/10.1016/j.physb.2017.11.034

    Article  CAS  Google Scholar 

  41. Ruiz-Fuertes J, Errandonea D, Segura A et al (2008) Growth, characterization, and high-pressure optical studies of CuWO4. High Press Res 28:565–570. https://doi.org/10.1080/08957950802446643

    Article  CAS  Google Scholar 

  42. Kuzmin A, Kalinko A, Evarestov RA (2013) Ab initio LCAO study of the atomic, electronic and magnetic structures and the lattice dynamics of triclinic CuWO4. Acta Mater 61:371–378. https://doi.org/10.1016/j.actamat.2012.10.002

    Article  CAS  Google Scholar 

  43. Almeida MAP, Cavalcante LS, Li MS et al (2012) Structural refinement and photoluminescence properties of MnWO4 nanorods obtained by microwave-hydrothermal synthesis. J Inorg Organomet Polym Mater 22:264–271. https://doi.org/10.1007/s10904-011-9548-9

    Article  CAS  Google Scholar 

  44. Ptak M, MacZka M, Hermanowicz K et al (2012) Temperature-dependent Raman and IR studies of multiferroic MnWO4 doped with Ni2+ ions. Spectrochim Acta A Mol Biomol Spectrosc 86:85–92. https://doi.org/10.1016/j.saa.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  45. Fan Q, Li P, Pan D (2019) Chapter 1—radionuclides sorption on typical clay minerals: Modeling and spectroscopies, 1st ed. Elsevier Ltd

  46. Khyzhun OY, Strunskus T, Cramm S, Solonin YM (2005) Electronic structure of CuWO4: XPS, XES and NEXAFS studies. J Alloys Compd 389:14–20. https://doi.org/10.1016/j.jallcom.2004.08.013

    Article  CAS  Google Scholar 

  47. Huang R, Gu X, Sun W et al (2020) In situ synthesis of Cu+ self-doped CuWO4/g-C3N4 heterogeneous Fenton-like catalysts: the key role of Cu+ in enhancing catalytic performance. Sep Purif Technol 250:117174. https://doi.org/10.1016/j.seppur.2020.117174

    Article  CAS  Google Scholar 

  48. Lp S, Saravanakumar K, Mamba G, Muthuraj V (2019) 1D/2D MnWO4 nanorods anchored on g-C3N4 nanosheets for enhanced photocatalytic degradation ofloxacin under visible light irradiation. Colloids Surf A Physicochem Eng Asp 581:123845. https://doi.org/10.1016/j.colsurfa.2019.123845

    Article  CAS  Google Scholar 

  49. Singh J, Manna AK, Soni RK (2020) Sunlight driven photocatalysis and non-enzymatic glucose sensing performance of cubic structured CuO thin films. Appl Surf Sci 530:147258. https://doi.org/10.1016/j.apsusc.2020.147258

    Article  CAS  Google Scholar 

  50. Guo W, Fan K, Zhang J, Xu C (2018) 2D/2D Z-scheme Bi2WO6 /Porous-g-C3N4 with synergy of adsorption and visible-light-driven photodegradation. Appl Surf Sci 447:125–134. https://doi.org/10.1016/j.apsusc.2018.03.080

    Article  CAS  Google Scholar 

  51. Friel JJ, Lyman CE (2006) X-ray Map** in electron-beam instruments. Microsc Microanal 12:2–25. https://doi.org/10.1017/S1431927606060211

    Article  CAS  PubMed  Google Scholar 

  52. Wood DL (1972) Weak absorption tails in amorphous semiconductor. Phys Rev B 5:3144–3151. https://doi.org/10.1103/PhysRevB.5.3144

    Article  Google Scholar 

  53. Ramasamy Raja V, Karthika A, Suganthi A, Rajarajan M (2018) Facile synthesis of MnWO4/BiOI nanocomposites and their efficient photocatalytic and photoelectrochemical activities under the visible-light irradiation. J Sci Adv Mater Devices 3:331–341. https://doi.org/10.1016/j.jsamd.2018.07.003

    Article  Google Scholar 

  54. Tang Y, Rong N, Liu F et al (2016) Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment. Appl Surf Sci 361:133–140. https://doi.org/10.1016/j.apsusc.2015.11.129

    Article  CAS  Google Scholar 

  55. Arotiba OA, Orimolade BO, Koiki BA (2020) Visible light–driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications. Curr Opin Electrochem 22:25–34. https://doi.org/10.1016/j.coelec.2020.03.018

    Article  CAS  Google Scholar 

  56. Yadav P, Sinha E (2019) Structural and optical properties of triclinic CuWO4 prepared by solid-state reaction technique. Macromol Symp 388:1–6. https://doi.org/10.1002/masy.201900019

    Article  CAS  Google Scholar 

  57. Nithya P, Roumana C (2020) Plate-like CuWO4 nanoparticles with their surface modified by bio-activated carbon nanosheets with optical properties and efficient dye-sensitized solar cells. J Mater Sci Mater Electron 31:9151–9159. https://doi.org/10.1007/s10854-020-03444-1

    Article  CAS  Google Scholar 

  58. Muhammed MH, Rajesh Kumar B, Sabu NA, Varghese T (2019) Effect of polyethylene glycol on the structural and optical properties of manganese tungstate nanorods synthesized by precipitation method. AIP Conf Proc 2162:2–8. https://doi.org/10.1063/1.5130305

    Article  CAS  Google Scholar 

  59. Li L, Li Y, Li Y et al (2021) Influences of Fe[sbnd]Mn ratio on the photocatalytic performance of wolframite (FexMn1-xWO4). Chem Geol 575:120253. https://doi.org/10.1016/j.chemgeo.2021.120253

    Article  CAS  Google Scholar 

  60. Massoud M (2005) Engineering thermofluids: thermodynamics, fluid mechanics, and heat transfer. Springer-Verlag Berlin

  61. Cui H, Shao M, Li B et al (2020) Journal of Physics and Chemistry of solids facile fabrication of MnWO4 /CdS composites for visible-light-driven photocatalytic Cr ( VI ) reduction. J Phys Chem Solids 136:109150. https://doi.org/10.1016/j.jpcs.2019.109150

    Article  CAS  Google Scholar 

  62. Askari N, Beheshti M, Mowla D, Farhadian M (2020) Fabrication of CuWO4/Bi2S3/ZIF67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics. Chemosphere 251:126453. https://doi.org/10.1016/j.chemosphere.2020.126453

    Article  CAS  PubMed  Google Scholar 

  63. Hankin A, Bedoya-Lora FE, Alexander JC et al (2019) Flat band potential determination: Avoiding the pitfalls. J Mater Chem A 7:26162–26176. https://doi.org/10.1039/c9ta09569a

    Article  CAS  Google Scholar 

  64. Santos HLS (2020) CuO/NiOx thin film–based photocathodes for photoelectrochemical water splitting. J Solid State Electrochem 24:1899–1908. https://doi.org/10.1007/s10008-020-04513-5

    Article  CAS  Google Scholar 

  65. Rajeshwar K (2007) Fundamentals of semiconductor electrochemistry and photoelectrochemistry. New York

  66. Afroz K, Bakranov N (2018) A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J Mater Chem A 6:21696–21718. https://doi.org/10.1039/c8ta04165b

    Article  CAS  Google Scholar 

  67. Li K, Zhang C, Li X et al (2019) A nanostructured CuWO4/Mn3O4 with p/n heterojunction as photoanode toward enhanced water oxidation. Catal Today 335:173–179. https://doi.org/10.1016/j.cattod.2018.11.003

    Article  CAS  Google Scholar 

  68. Xu X, Pan L, Zhang X et al (2018) Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution : a comprehensive review. Adv Sci 6(2):1801505. https://doi.org/10.1002/advs.201801505

    Article  CAS  Google Scholar 

  69. Costa MJS, Costa GS, Lima AEB et al (2018) Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density. Ionics (Kiel) 24:3291–3297. https://doi.org/10.1007/s11581-018-2640-1

    Article  CAS  Google Scholar 

  70. Spadavecchia F, Ardizzone S, Cappelletti G et al (2013) Investigation and optimization of photocurrent transient measurements on nano-TiO2. J Appl Electrochem 43:217–225. https://doi.org/10.1007/s10800-012-0485-2

    Article  CAS  Google Scholar 

  71. Costa MJS, Costa GS, Lima AEB et al (2018) Photocurrent response and progesterone degradation by employing WO3 films modified with platinum and silver nanoparticles. ChemPlusChem 83:1153–1161. https://doi.org/10.1002/cplu.201800534

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the research financing institutions: CNPq (455864/2014-4, 307559/2015-7, 307559/2016-8, 305757/2018-0, 166281/2017-4), FINEP (ref. no. 0315/08), FAPESP (2013/07296-2, 2019/26860-2), and financial support from the FAPEPI (006/2018)/CAPES Institution for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aline E. B. Lima or Geraldo E. Luz Jr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A new FTO|CuWO4|MnWO4 heterojunction film was synthesized by microwave-hydrothermal method.

• The type-II band alignment of the heterojunction film promoted efficient charge separation and transfer.

• The film heterojunction photoanode exhibited short charge carrier recombination time and improvement at photocurrent density.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, A.E.B., Assis, M., Resende, A.L.S. et al. CuWO4|MnWO4 heterojunction thin film with improved photoelectrochemical and photocatalytic properties using simulated solar irradiation. J Solid State Electrochem 26, 997–1011 (2022). https://doi.org/10.1007/s10008-022-05143-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05143-9

Keywords

Navigation