Log in

Assessment of prospective cathodes based on (1-x)Ca3Co4O9+δ-xBaCe0.5Zr0.3Y0.1Yb0.1O3-δ composites for protonic ceramic electrochemical cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work presents investigation of novel composite electrodes comprising misfit layered oxide Ca3Co4O9+δ and protonic conductor BaCe0.5Zr0.3Y0.1Yb0.1O3-δ. Materials for the study were synthesized by the pyrolysis of organic salt compositions, and their structure, conductivity, chemical, and thermal compatibility were comprehensively studied. Composite two-layered electrodes with functional layers of (1-x)Ca3Co4O9+δ-xBaCe0.5Zr0.3Y0.1Yb0.1O3-δ (x = 0.0; 0.3; 0.4; 0.5), and oxide collectors were successfully fabricated by layer-by-layer painting on BaCe0.5Zr0.3Y0.1Yb0.1O3-δ substrates. Polarization characteristics of the electrodes were studied by the method of impedance spectroscopy. It was shown that the developed two-layered electrode with a functional layer of 0.7Ca3Co4O9+δ-0.3BaCe0.5Zr0.3Y0.1Yb0.1O3-δ and an oxide collector layer of LaNi0.6Fe0.4O3-δ + 3 wt.% CuO had superior performance in comparison with Ca3Co4O9+δ electrodes with collectors based on noble metals and can be recommended as a prospective low-cost cathode composition for protonic ceramic electrochemical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Venkataraman V, Pérez-Fortes M, Wang L, Hajimolana YS, Boigues-Muñoz C, Agostini A, McPhail SJ, Maréchal F, Herle JV, Aravind PV (2019) Reversible solid oxide systems for energy and chemical applications–Review & perspectives. J Energy Storage 24:100782

    Article  Google Scholar 

  2. Duan C, Kee RJ, Zhu H, Karakawa C, Chen Y, Ricote S, Jarry A, Crumlin EJ, Hook D, Braun R, Sullivan NP, O’Hayre R (2018) Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557(7704):217–222. https://doi.org/10.1038/s41586-018-0082-6

    Article  CAS  PubMed  Google Scholar 

  3. Kasyanova AV, Tarutina LR, Rudenko AO, Lyagaeva JG, Medvedev DA (2020) Ba(Ce,Zr)O3-based electrodes for protonic ceramic electrochemical cells: towards highly compatible functionality and triple-conducting behavior. Russ Chem Rev. https://doi.org/10.1070/RCR4928

  4. Srandbakke R, Cherepanov VA, Zuev AY, Tsvetkov DS, Argirusis C, Sourkouni G, Prünte S, Norby T (2015) Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics 278:120–132

    Article  Google Scholar 

  5. Lyagaeva YuG, Danilov NA, Gorshkov MYu, Vdovin GK, Antonov BD, Demin AK, Medvedev DA (2018) Functionality of lanthanum, neodymium, and praseodymium nickelates as promising electrode systems for proton-conducting electrolytes. Russ J Appl Chem 91(4):583–590

  6. Løken A, Ricote S, Wachowski S (2018) Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals 8:365

    Article  Google Scholar 

  7. Istomin SYa, Antipov EV (2013) Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russ Chem Rev 82(7):686–700

  8. Qi X, Zeng S, Wang H, Liu P, Liu Y (2010) Thermoelectric properties of Ca3Co4O9 ceramics. J Wuhan Univ Technol Mat Sci Ed 11:287–290

    Article  Google Scholar 

  9. Matsukevich IV, Klyndyuk AI, Kolosovskaya OYu (2013) Process features during the Ca3Co4O9+δ ceramics synthesize and its properties. Proceedings of BSTU: Chemistry and Technology of inorganic materials and compounds 6:21–28

  10. Thoréton V, Hu Y, Pirovano C, Capoen E, Nuns N, Mamede AS, Dezanneau G, Yoo CY, Bouwmeester HJM, Vannier RN (2014) Oxygen transport kinetics of the misfit layered oxide Ca3Co4O9+δ. J Mater Chem A 2(46):19717–19725

    Article  Google Scholar 

  11. Yu S, He S, He C, Guo L (2015) Effect of calcination temperature on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate temperature solid oxide fuel cell cathodes. J Power Sources 52:581–587

    Article  Google Scholar 

  12. Nagasawa K, Daviero-Minaud S, Preux N, Rolle A, Roussel P, Nakatsugawa H, Mentre O (2009) Ca3Co4O9: a thermoelectric material for SOFC cathode. Chem Mater 21(19):4738–4745

    Article  CAS  Google Scholar 

  13. Samson AJ, Søgaard M, Nong NV, Pryds N, Bonanos N (2011) Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ. J Power Sources 196(24):10606–10610

    Article  CAS  Google Scholar 

  14. Rolle A, Mohamed HAA, Huo D, Capoen E, Mentré O, Vannier R-N, Daviero-Minaud S, Boukamp BA (2016) Ca3Co4O9+δ, a growing potential SOFC cathode material: impact of the layer composition and thickness on the electrochemical properties. Solid State Ionics 294:21–30

    Article  CAS  Google Scholar 

  15. Silva VD, Silva RM, Grilo JPF, Loureiro F, Fagg DP, Medeiros ES, Macedo DA (2018) Electrochemical assessment of novel misfit Ca-cobaltite based composite SOFC cathodes synthesized by solution blow spinning. J Eur Ceram Soc 38(6):2562–2569

    Article  CAS  Google Scholar 

  16. Yahia HB, Mauvy F, Grenier J-C (2010) Ca3-xLaxCo4O9+δ (x = 0, 0.3): new cobaltite materials as cathodes for proton conducting solid oxide fuel cell. J Solid State Chem 183(3):527–531

    Article  Google Scholar 

  17. Pikalova E, Kolchugin A, Koroleva M, Vdovin A, Farlenkov A, Medvedev D (2019) Functionality of an oxygen Ca3Co4O9+δ electrode for reversible solid oxide electrochemical cells based on proton-conducting electrolytes. J Power Sources 438:226996

    Article  CAS  Google Scholar 

  18. Delorme F, Fernandez MC, Marudhachalam P, Ovono Ovono D, Guzman G (2011) Effect of Ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics. J Alloys Compd 509(5):2311–2315

    Article  CAS  Google Scholar 

  19. Diez JC, Torres MA, Rasekh S, Constantinescu G, Madre MA, Sotelo A (2013) Enhancement of Ca3Co4O9 thermoelectric properties by Cr for Co substitution. Ceram Int 39(6):6051–6056

    Article  CAS  Google Scholar 

  20. Agilandeswari K, Ruban Kumar A (2014) Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca3Co4O9 by a starch assisted sol–gel combustion method. J Magn Magn Mater 364:117–124

    Article  CAS  Google Scholar 

  21. Wu NY, Holgate TC, Nong NV, Pryds N, Linderoth S (2014) High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering. J Eur Ceram Soc 34(4):925–931

    Article  Google Scholar 

  22. Song X, McIntyre D, Chen X, Barbero EJ, Chen Y (2015) Phase evolution and thermoelectric performance of calcium cobaltite upon high temperature aging. Ceram Int 41(9):11069–11074

    Article  CAS  Google Scholar 

  23. Rolle A, Boulfrad S, Nagasawa K, Nakatsugawa H, Mentréa O, Irvine J, Daviero-Minaud S (2011) Optimisation of the solid oxide fuel cell (SOFC) cathode material Ca3Co4O9+δ. J Power Sources 196(17):7328–7332

    Article  CAS  Google Scholar 

  24. Guo P, Huang X, Zhu X, Lü Z, Zhou Y, Li L, Li Z, Wei B, Zhang Y, Su W (2013) A new composite material Ca3Co4O9+d+La0.7Sr0.3CoO3 developed for intermediate-temperature SOFC cathode. Fuel Cells 13:666–672

    CAS  Google Scholar 

  25. Pikalova EYu, Kolchugin AA, Sadykov VA, Sadovskaya EM, Filonova EA, Eremeev NF, Bogdanovich NM (2018) Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium. Int J Hydrog Energy 43(36):17373–17386

  26. Sadykov VA, Sadovskaya EM, Eremeev NF, Skriabin PI, Krasnov AV, Bespalko YN, Pavlova SN, Fedorova YE, Pikalova EYu, Shlyakhtina AV (2019) Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review). Russ J Electrochem 55(8):701–718

  27. Lyagaeva J, Vdovin G, Hakimova L, Medvedev D, Demin A, Tsiakaras P (2017) BaCe0.5Zr0.3Y0.2–xYbxO3–δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochim Acta 23:554–561

    Article  Google Scholar 

  28. Afif A, Radenahmad N, Zaini J, Abdalla Mohamed A, Rahman SMH, Eriksson S, Azad AK (2018) Enhancement of proton conductivity through Yb and Zn do** in BaCe0.5Zr0.35Y0.15O3-δ electrolyte for IT-SOFCs. Process Appl Ceram 12(2):180–188

    Article  CAS  Google Scholar 

  29. Zhu H, Ricote S, Duan C, O’Hayre R, Kee RJ (2018) Defect chemistry and transport within dense BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) proton-conducting membranes. J Electrochem Soc 165:F845–F853

    Article  CAS  Google Scholar 

  30. Yang S, Zhang S, Sun C, Ye X, Wen Z (2018) Lattice incorporation of Cu2+ into the BaCe0.7Zr0.1Y0.1Yb0.1O3−δ electrolyte on boosting its sintering and proton-conducting abilities for reversible solid oxide cells. ACS Appl Mater Interfaces 10(49):42387–42396

    Article  CAS  Google Scholar 

  31. Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H, Dokiya M, Naraya K, Sasamoto T, Inaba H, Hashimoto T (2000) Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ionics 132(3-4):167–180

    Article  CAS  Google Scholar 

  32. Pikalova EYu, Bogdanovich NM, Kolchugin AA, Osinkin DA, Bronin DI (2014) Electrical and electrochemical properties of La2NiO4+δ-based cathodes in contact with Ce0.8Sm0.2O2-δ electrolyte. Procedia Engineering 98:105–110

  33. Pikalova EYu, Kolchugin AA (2016) The influence of the substituting element (M = Ca, Sr, Ba) in La1.7M0.3NiO4+δ on the electrochemical performance of the composite electrodes. Euras Chem-Tech J 18:3–11

  34. Antonova EP, Kolchugin AA, Pikalova EYu, Medvedev DA, Bogdanovich NM (2017) Development of electrochemically active electrodes for BaCe0.89Gd0.1Cu0.01O3−δ proton conducting electrolyte. Solid State Ionics 306:55–61

  35. Kang M-G, Cho K-H, Kim G-S, Nahm S, Yoon S-J, Kang C-Y (2014) Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials. Acta Mater 173:251–258

    Article  Google Scholar 

  36. Pikalova EYu, Bogdanovich NM, Kuz’min AV (2017) Composite electrodes for proton conducting electrolyte of CaZr0.95Sc0.05O3–δ. Russ J Electrochem 53:752–760

  37. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192(1-2):55–69

    Article  CAS  Google Scholar 

  38. Madre MA, Costa FM, Ferreira NM, Sotelo A, Torres MA, Constantinescu G, Rasekh S, Diez JC (2013) Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J Eur Ceram Soc 33(10):1747–1754

    Article  CAS  Google Scholar 

  39. Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J (2000) Misfit layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev 62(1):166–175

    Article  CAS  Google Scholar 

  40. Delorme F, Diaz-Chao P, Guilmeau E, Giovannelli F (2015) Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceram Int 41(8):10038–10043

    Article  CAS  Google Scholar 

  41. Bishop SR, Marrocchelli D, Chatzichristodoulou C, Perry NH, Mogensen MB, Tuller HL, Wachsman ED (2014) Chemical expansion: implications for electrochemical energy storage and conversion devices. Annu Rev Mater Res 44(1):205–239

    Article  CAS  Google Scholar 

  42. Lyagaeva J, Medvedev D, Filonova E, Demin A, Tsiakaras P (2015) Textured BaCe0.5Zr0.3Ln0.2O3-δ (Ln = Yb, Y, Gd, Sm, Nd and La) ceramics obtained by the aid of solid-state reactive sintering method. Scr Mater 109:34–37

    Article  CAS  Google Scholar 

  43. Shi Z, Sun W, Liu W (2014) Synthesis and characterization of BaZr0.3Ce0.5Y0.2-xYbxO3-δ proton conductor for solid oxide fuel cells. J Power Sources 245:953–957

    Article  CAS  Google Scholar 

  44. Zhou X, Liu L, Zhen J, Zhu S, Li B, Sun K, Wang P (2011) Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr0.1Ce0.7Y0.1Yb0.1O3−δ prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process. J Power Sources 196:5000–5006

    Article  CAS  Google Scholar 

  45. Lagaeva J, Medvedev D, Demin A, Tsiakaras P (2015) Insights on thermal and transport features of BaCe0.8−xZrxY0.2O3−δ proton-conducting materials. J Power Sources 278:436–444

    Article  CAS  Google Scholar 

  46. Medvedev DA, Pikalova EYu (2018) Development of the cathode materials for intermediate-temperature SOFCs based on proton-conducting electrolytes. In: Syngellakis S, Brebbia C (eds) Challenges and solutions in the Russian energy sector. Innovation and Discovery in Russian Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-75702-5_20

  47. Fabbri E, Pergolesi D, Traversa E (2010) Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Sci Technol Adv Mater 11:044301

    Article  Google Scholar 

  48. Ishihara T, Fukui S, Nishiguchi H, Takita Y (2002) Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics 152-153:609–613

    Article  CAS  Google Scholar 

  49. Raquet B, Baibich MN, Broto JM, Rakoto H, Lambert S, Maignan A (2002) Hop** conductivity in one-dimensional Ca3Co2O6 single crystals. Int J Mod Phys B 16(20–22):397–400

    Google Scholar 

  50. Bronin DI, Kuzin BL, Yaroslavtsev IYu, Bogdanovich NM (2006) Behavior of manganite electrodes in contact with LSGM electrolyte: the nature of low electrochemical activity. J Solid State Electrochem 10(8):651–658

  51. Antonova EP, Osinkin DA, Bogdanovich NM, Gorshkov MYu, Bronin DI (2019) Electrochemical performance of Ln2NiO4+δ (Ln – La, Nd, Pr) and Sr2Fe1.5Mo0.5O6−δ oxide electrodes in contact with apatite-type La10(SiO6)4O3 electrolyte. Solid State Ionics 329:82–89

  52. Wan Y, He B, Wang R, Ling Y, Zhao L (2017) Effect of Co do** on sinterability and protonic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for protonic ceramic fuel cells. J Power Sources 347:14–20

    Article  CAS  Google Scholar 

  53. Wang S, Zhao F, Zhang L, Chen F (2012) Synthesis of BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton conducting ceramic by a modified Pechini method. Solid State Ionics 213:29–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The electrochemical study of the electrodes was performed in the framework of the Government task of the Institute of High Temperature Electrochemistry, UB RAS. The authors from the Ural Federal University are grateful to the Government of the Russian Federation (Agreement 02.A03.21.0006, Act 211). The facilities of the Shared Access Center “Composition of Compounds” of IHTE UB RAS were used in this study. The authors are grateful to Dr. D. Medvedev and Mr. A. Kolchugin (IHTE UB RAS) for the truthful discussion of the results obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Filonova or E. Yu. Pikalova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5416 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filonova, E.A., Tokareva, E.S., Pikalova, N.S. et al. Assessment of prospective cathodes based on (1-x)Ca3Co4O9+δ-xBaCe0.5Zr0.3Y0.1Yb0.1O3-δ composites for protonic ceramic electrochemical cells . J Solid State Electrochem 24, 1509–1521 (2020). https://doi.org/10.1007/s10008-020-04606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04606-1

Keywords

Navigation