Log in

Eco-friendly biopolymer electrolyte, pectin with magnesium nitrate salt, for application in electrochemical devices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Current research on electrochemical device application focuses on the usage of biopolymers like chitosan, pectin, agar-agar, cellulose acetate, and carrageenan as the electrolyte. The present work deals with the study of an eco-friendly biopolymer electrolyte pectin with magnesium nitrate salt Mg(NO3)2 prepared by solution casting technique. The prepared biopolymer electrolytes were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), AC impedance analysis, and linear sweep voltammetry (LSV). XRD analysis has been used to confirm the amorphous nature of the biopolymer pectin and magnesium nitrate salt. FTIR analysis has been used to confirm the complex formation between the polymer and the salt. DSC analysis has been used to find the glass transition temperature (Tg) of the prepared biopolymer electrolytes. AC impedance analysis has been used to study the electrical characterization of the prepared biopolymer electrolytes. The biopolymer electrolyte 50 M.wt% pectin:50 M.wt% Mg(NO3)2 has the highest ionic conductivity in the order of 10−4 S cm−1. The total ionic transference number of the highest conducting sample is 0.97 and the transference number of Mg2+ ion is 0.29. LSV has been used to find the electrochemical stability of the biopolymer electrolytes. The electrochemical stability of 50 M.wt% pectin:50 M.wt% Mg(NO3)2 is 3.8 V. This biopolymer electrolyte has been used to construct magnesium ion battery and the battery performance has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu W, Lin D, Sun J, Zhou G, Cui Y (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10(12):11407–11413

    Article  CAS  PubMed  Google Scholar 

  2. Zulkefli FN, Navaratnam S, Ahmad AH (2015) Proton conducting biopolymer electrolytes based on starch incorporated with ammonium thiocyanate. Adv Mater Res 1112:275–278

    Article  Google Scholar 

  3. Hemalatha R, Radha KP, Jesintha Leema Rose 004D (2016) AC impedance, FTIR studies of biopolymer electrolyte potato starch: NH4SCN. Int J Multidiscip Educ Res 1:01–03

  4. Rani M, Rudhziah S, Ahmad A, Mohamed N (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9):2371–2385

    Article  CAS  Google Scholar 

  5. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47

    Article  CAS  PubMed  Google Scholar 

  6. Sohaimy MIH, Isa MIN (2017) Ionic conductivity and conduction mechanism studies on cellulose based solid polymer electrolytes doped with ammonium carbonate. Polym Bull 74(4):1371–1386

    Article  CAS  Google Scholar 

  7. Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134:44702

    Article  CAS  Google Scholar 

  8. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780

    Article  CAS  Google Scholar 

  9. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277

    Article  CAS  Google Scholar 

  10. Srivastava P, Malviya R (2011) Sources of pectin, extraction and its applications in pharmaceutical industry—an overview. Indian J Nat Prod Resour 2:10–18

    CAS  Google Scholar 

  11. Shendge RS, Jamdhade AA, Pande VV (2014) Novel strategy in controlled gastroretentive drug delivery: in-situ floating gel. Int J Drug Deliv 6:230–243

    CAS  Google Scholar 

  12. Kavitha S, Vijaya N, Pandeeswari R, Premalatha M (2016) Vibrational, electrical and optical studies on pectin-based polymer electrolyte. Int Res J Eng Tech 3:1385–1390

    Google Scholar 

  13. Perumal P, Christopher Selvin P, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics 24(10):3259–3270

    Article  CAS  Google Scholar 

  14. Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2016) Proton-conducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). Ionics 23:2799–2808

    Article  CAS  Google Scholar 

  15. Muthukrishnan M, Shanthi C, Selvasekarapandian S, Manjuladevi R, Perumal P, Chrishtopher Selvin P (2018) Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications. Ionics. 25(1):203–214. https://doi.org/10.1007/s11581-018-2568-5

    Article  CAS  Google Scholar 

  16. Mendes JP, Esperança JMSS, Medeiros MJ, Pawlicka A, Silva MM (2017) Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytes. Mol Cryst Liq Cryst 643(1):266–273

    Article  CAS  Google Scholar 

  17. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265

    Article  CAS  Google Scholar 

  18. Pandey GP, Agrawal RC, Hashmi SA (2009) Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J Power Sources 190(2):563–572

    Article  CAS  Google Scholar 

  19. Sharma J, Hashmi S (2018) Magnesium ion-conducting gel polymer electrolyte nanocomposites: effect of active and passive nanofillers. Polym Compos 40(4):1295–1306. https://doi.org/10.1002/pc.24853

    Article  CAS  Google Scholar 

  20. Ramaswamy M, Malayandi T, Subramanian S, Srinivasalu J, Rangaswamy M, Soundararajan V (2017) Development and study of solid polymer electrolyte based on polyvinyl alcohol: Mg(ClO4)2. Ploys Plast Technol Eng 56(9):992–1002

    Article  CAS  Google Scholar 

  21. Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56(11):3864–3873

    Article  CAS  Google Scholar 

  22. Shanmuga Priya S, Karthika M, Selvasekarapandian S, Manjuladevi R, Monisha S (2018) Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 24(12):3861–3875

    Article  CAS  Google Scholar 

  23. Manjuladevi R, Selvasekarapandian S, Thamilselvan M, Mangalam R, Monisha S, Selvin PC (2018) A study on blend polymer electrolyte based on poly(vinyl alcohol)-poly (acrylonitrile) with magnesium nitrate for magnesium battery. Ionics 24(11):3493–3506

    Article  CAS  Google Scholar 

  24. Sharma J, Hashmi SA (2018) Plastic crystal-incorporated magnesium ion conducting gel polymer electrolyte for battery application. Bull Mater Sci 41(6):147

    Article  CAS  Google Scholar 

  25. Jia X, Yang Y, Wang C, Zhao C, Vijayaraghavan R, MacFarlane DR, Wallace GG (2014) Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interfaces 6(23):21110–21117

    Article  CAS  PubMed  Google Scholar 

  26. Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54(26):6479–6483

    Article  CAS  Google Scholar 

  27. Leones R, Botelho MBS, Sentanin F, Cesarino I, Pawlicka A, Camargo ASS, Silva MM (2014) Pectin-based polymer electrolytes with Ir(III) complexes. Mol Cryst Liq Cryst 604(1):117–125

    Article  CAS  Google Scholar 

  28. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  29. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Pandi DV, Nithya S, Sanjeeviraja C (2014) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19:987–999

    Article  CAS  Google Scholar 

  30. Sridevi D, Rajendran KV (2009) Synthesis and optical characteristics of ZnO nanocrystals. Bull Master Sci 32(2):165–168

    Article  CAS  Google Scholar 

  31. Vij A, Chawla AK, Kumar R, Lochab SP, Chandra R, Singh N (2010) Effect of 120 MeVAg9+ ion beam irradiation on the structure and photoluminescence of SrS:Ce nanostructures. Phys B 405(11):2573–2576

    Article  CAS  Google Scholar 

  32. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434

    Article  CAS  Google Scholar 

  33. Sutar PB, Mishra RK, Pal K, Banthia AK (2007) Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci Mater Med 19:2247–2253

    Article  CAS  PubMed  Google Scholar 

  34. Maciel VBV, Yoshida CMP, Franco TT (2015) Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr Polym 132:537–545

    Article  CAS  PubMed  Google Scholar 

  35. Mishra RK, Sutar PB, Singhal JP, Banthia AK (2007) Graft copolymerization of pectin with polyacrylamide. Polym Plast Technol Eng 46(11):1079–1085

    Article  CAS  Google Scholar 

  36. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Christopher Selvin P, Mangalam R, Monisha S (2017) Preparation and characterization of blend polymer electrolyte film based on poly(vinyl alcohol)-poly(acrylonitrile)/MgCl2 for energy storage devices. Ionics 24:1083–1095

    Article  CAS  Google Scholar 

  37. Nirmala Devi G, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S, Saranya J (2017) Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23(12):3377–3388

    Article  CAS  Google Scholar 

  38. Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22(8):1299–1310

    Article  CAS  Google Scholar 

  39. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85(1):11–15

    Article  Google Scholar 

  40. Boukamp BA (1986) A non-linear lease square fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20(1):31–44

    Article  CAS  Google Scholar 

  41. Teeters D, Neuman RG, Tate BD (1996) The concentration behavior of lithium triflate at the surface of polymer electrolyte materials. Solid State Ionics 85(1-4):239–245

    Article  CAS  Google Scholar 

  42. Ross Macdonald J (1992) Impedance spectroscopy. Ann Biomed Eng 20(3):289–305

    Article  Google Scholar 

  43. Adachi K, Urakawa O (2002) Dielectric study of concentration fluctuations in concentrated polymer solutions. J Non-Cryst Solids 307:667–670

    Article  Google Scholar 

  44. Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26(6):1597–1601

    Article  CAS  Google Scholar 

  45. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Article  CAS  Google Scholar 

  46. Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20(1):31–44

    Article  CAS  Google Scholar 

  47. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140

    Article  Google Scholar 

  48. Reddy CVS, Sharma AK, Rao VN (2003) Conductivity and discharge characteristics of polyblend (PVP+ PVA+ KIO3) electrolyte. J Power Sources 114(2):338–345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiruthika, S., Malathi, M., Selvasekarapandian, S. et al. Eco-friendly biopolymer electrolyte, pectin with magnesium nitrate salt, for application in electrochemical devices. J Solid State Electrochem 23, 2181–2193 (2019). https://doi.org/10.1007/s10008-019-04313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04313-6

Keywords

Navigation