Log in

Enhancing the formation and capacitance properties of interfacial polymerized polyaniline nanofibers by introducing small alcohol molecules

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three kinds of polyaniline (PANI) nanofibers were prepared by introducing small alcohol molecules including methanol and ethanol as co-solvents into aqueous phase in the interfacial polymerization. The influences of alcohols on the morphology, microstructure, and electrochemical behaviors of PANI nanofibers were investigated by field emission scanning electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, as well as electrical and electrochemical measurements. It is found that the growth and migration of PANI nanofibers were obviously suppressed due to the hydrogen bonding between polymer chains and alcohol molecules. An improvement on the electrochemical performances could be achieved by adding alcohol molecules especially ethanol into aqueous medium. The specific capacitance was 1017, 1031, and 1042 F g−1 at the scan rate of 5 mV s−1 and 444, 463, and 489 F g−1 at the current density of 1 A g−1 for the PANI nanofibers prepared without alcohol as well as with methanol and ethanol, respectively. The increase in specific capacitance could be contributed to the formation of the nanofibers with larger length to diameter ratio and higher orientation of polymer chains, which could provide shorter ion diffusion path, enhance the electroactive regions, and increase the electrode/electrolyte contact area. This study therefore provides an efficient modified interfacial polymerization for fabricating PANI nanofibers with more desirable morphology and better energy storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46(5):1510–1525. https://doi.org/10.1039/C6CS00555A

    Article  CAS  Google Scholar 

  2. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285. https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  3. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  4. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  5. Zhou S, Wu T, Kan J (2007) Effect of methanol on morphology of polyaniline. Eur Polym J 43(2):395–402. https://doi.org/10.1016/j.eurpolymj.2006.11.011

    Article  CAS  Google Scholar 

  6. Huang J, Kaner RB (2006) The intrinsic nanofibrillar morphology of polyaniline. Chem Commun (4):367–376. https://doi.org/10.1039/B510956F

  7. Huang Y, Lin C (2010) Exploration of the morphological transition phenomenon of polyaniline from microspheres to nanotubes in acid-free aqueous 1-propanol solution in a single polymerization process. Polym Int 59(9):1226–1232. https://doi.org/10.1002/pi.2852

    Article  CAS  Google Scholar 

  8. Rakic AA, Vukomanovic M, Trifunovic S, Travas-Sejdic J, Chaudhary OJ, Horsky J, Ciric-Marjanovic G (2015) Solvent effects on dopant-free pH-falling polymerization of aniline. Synth Met 209:279–296. https://doi.org/10.1016/j.synthmet.2015.07.031

    Article  CAS  Google Scholar 

  9. Rakic AA, Vukomanovic M, Ciric-Marjanovic G (2014) Formation of nanostructured polyaniline by dopant-free oxidation of aniline in a water/IPA mixture. Chem Pap 68:372–383

    Article  CAS  Google Scholar 

  10. Kan J, Lv R, Zhang S (2004) Effect of ethanol on properties of electrochemically synthesized polyaniline. Synth Met 145(1):37–42. https://doi.org/10.1016/j.synthmet.2004.04.017

    Article  CAS  Google Scholar 

  11. Huang Y, Lin C (2010) The structure change-induced morphology transition of polyaniline in 1, 6-hexanediol aqueous and acid-free solutions: from submicron-spheres to nanofibers. Synth Met 160(5-6):384–389. https://doi.org/10.1016/j.synthmet.2009.11.011

    Article  CAS  Google Scholar 

  12. Park HW, Kim T, Huh J, Kang M, Lee JE, Yoon H (2012) Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 6(9):7624–7633. https://doi.org/10.1021/nn3033425

    Article  CAS  Google Scholar 

  13. Huang Y, Lin C (2009) Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer 50(3):775–782. https://doi.org/10.1016/j.polymer.2008.12.016

    Article  CAS  Google Scholar 

  14. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126(3):851–855. https://doi.org/10.1021/ja0371754

    Article  CAS  Google Scholar 

  15. Kan J, Zhang S, **g G (2006) Effect of ethanol on chemically synthesized polyaniline nanothread. J Appl Polym Sci 99(4):1848–1853. https://doi.org/10.1002/app.22345

    Article  CAS  Google Scholar 

  16. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew Chem 116(43):5941–5945. https://doi.org/10.1002/ange.200460616

    Article  Google Scholar 

  17. Gottam R, Srinivasan P (2015) A novel process of alcohol promoted polymerization of aniline to form a nanofibrous, fluorescent and highly crystalline polyaniline salt. New J Chem 39(11):8545–8551. https://doi.org/10.1039/C5NJ01687H

    Article  CAS  Google Scholar 

  18. Zhou C, Gong X, Qu Y, Han J (2016) Hydrophobic and high adhesive polyaniline layer of rectangular microtubes fabricated by a modified interfacial polymerization. Appl Surf Sci 379:124–131. https://doi.org/10.1016/j.apsusc.2016.04.042

    Article  CAS  Google Scholar 

  19. Konyushenko EN, Reynaud S, Pellerin V, Trchova M, Stejskal J, Sapurina I (2011) Polyaniline prepared in ethylene glycol or glycerol. Polymer 52(9):1900–1907. https://doi.org/10.1016/j.polymer.2011.02.047

    Article  CAS  Google Scholar 

  20. Gedela VR, Srikanth VSS (2014) Polyaniline nanostructures expedient as working electrode materials in supercapacitors. Appl Phys A Mater Sci Process 115(1):189–197. https://doi.org/10.1007/s00339-013-7920-z

    Article  CAS  Google Scholar 

  21. Li T, Qin Z, Liang B, Tian F, Zhao J, Liu N, Zhu M (2015) Morphology-dependent capacitive properties of three nanostructured polyanilines through interfacial polymerization in various acidic media. Electrochim Acta 177:343–351. https://doi.org/10.1016/j.electacta.2015.03.169

    Article  CAS  Google Scholar 

  22. Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J (2014) Synthesis of hollow polyaniline nano-capsules and their supercapacitor application. J Power Sources 272:915–921. https://doi.org/10.1016/j.jpowsour.2014.09.013

    Article  CAS  Google Scholar 

  23. Grover S, Goel S, Marichi RB, Sahu V, Singh G, Sharma RK (2016) Polyaniline all solid-state pseudocapacitor: role of morphological variations in performance evolution. Electrochim Acta 196:131–139. https://doi.org/10.1016/j.electacta.2016.02.157

    Article  CAS  Google Scholar 

  24. Wu W, Pan D, Li Y, Zhao G, **g L, Chen S (2015) Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim Acta 152:126–134. https://doi.org/10.1016/j.electacta.2014.11.130

    Article  CAS  Google Scholar 

  25. Cho SH, Shin KH, Jang J (2013) Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Appl Mater Interfaces 5(18):9186–9193. https://doi.org/10.1021/am402702y

    Article  CAS  Google Scholar 

  26. Guan H, Fan L, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56(2):964–968. https://doi.org/10.1016/j.electacta.2010.09.078

    Article  CAS  Google Scholar 

  27. Zhou H, Chen H, Luo S, Lu G, Wei W, Kuang Y (2005) The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. J Solid State Electrochem 9(8):574–580. https://doi.org/10.1007/s10008-004-0594-x

    Article  CAS  Google Scholar 

  28. Li J, Jia Q, Zhu J, Zheng M (2008) Interfacial polymerization of morphologically modified polyaniline: from hollow microspheres to nanowires. Polym Int 57(2):337–341. https://doi.org/10.1002/pi.2353

    Article  CAS  Google Scholar 

  29. Dallas P, Georgakilas V (2015) Interfacial polymerization of conductive polymers: generation of polymeric nanostructures in a 2-D space. Adv Colloid Interface Sci 224:46–61. https://doi.org/10.1016/j.cis.2015.07.008

    Article  CAS  Google Scholar 

  30. Ji T, Cao W, Chen L, Mu L, Wang H, Gong X, Lu X, Zhu J (2016) Confined molecular motion across liquid/liquid interfaces in a triphasic reaction towards free-standing conductive polymer tube arrays. J Mater Chem A 4(17):6290–6294. https://doi.org/10.1039/C6TA01247G

    Article  CAS  Google Scholar 

  31. Li R, Chen Z, Li J, Zhang C, Guo Q (2013) Effective synthesis to control the growth of polyaniline nanofibers by interfacial polymerization. Synth Met 171:39–44. https://doi.org/10.1016/j.synthmet.2013.02.020

    Article  CAS  Google Scholar 

  32. Zeng F, Qin Z, Liang B, Li T, Liu N, Zhu M (2015) Polyaniline nanostructures tuning with oxidants in interfacial polymerization system. Prog Nat Sci Mater Int 25:512–519

    Article  CAS  Google Scholar 

  33. Zhang X, Chan-Yu-King R, Jose A, Manohar SK (2004) Nanofibers of polyaniline synthesized by interfacial polymerization. Synth Met 145(1):23–29. https://doi.org/10.1016/j.synthmet.2004.03.012

    Article  CAS  Google Scholar 

  34. Ding S, Mao H, Zhang W (2008) Fabrication of DBSA-doped polyaniline nanorods by interfacial polymerization. J Appl Polym Sci 109(5):2842–2847. https://doi.org/10.1002/app.28355

    Article  CAS  Google Scholar 

  35. Zhao J, Qin Z, Li T, Li Z, Zhou Z, Zhu M (2015) Influence of acetone on nanostructure and electrochemical properties of interfacial synthesized polyaniline nanofibers. Prog Nat Sci Mater Int 25:316–322

    Article  CAS  Google Scholar 

  36. Zhao Y, Wei H, Arowo M, Yan X, Wu W, Chen J, Wang Y, Guo Z (2015) Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs rapid mixing chemical oxidative polymerization. Phys Chem Chem Phys 17(2):1498–1502. https://doi.org/10.1039/C4CP03144J

    Article  CAS  Google Scholar 

  37. Mi H, Zhang X, Yang S, Ye X, Luo J (2008) Polyaniline nanofibers as the electrode material for supercapacitors. Mater Chem Phys 112(1):127–131. https://doi.org/10.1016/j.matchemphys.2008.05.022

    Article  CAS  Google Scholar 

  38. Li T, Zhou Y, Liang B, ** D, Liu N, Qin Z, Zhu M (2017) One-pot synthesis and electrochemical properties of polyaniline nanofibers through simply tuning acid-base environment of reaction medium. Electrochim Acta 249:33–42. https://doi.org/10.1016/j.electacta.2017.07.177

    Article  CAS  Google Scholar 

  39. Devaraj S, Vardhan PV (2017) Capacitive storage performance of nanorod assembly of polyaniline. J Solid State Electrochem 21(4):1121–1127. https://doi.org/10.1007/s10008-016-3464-4

    Article  CAS  Google Scholar 

  40. Lim GH, Choi HJ (2017) Fabrication of self-assembled polyaniline tubes and their electrorheological characteristics. Colloids Surf A Physicochem Eng Asp 530:227–234. https://doi.org/10.1016/j.colsurfa.2017.07.063

    Article  CAS  Google Scholar 

  41. Navale YH, Navale ST, Chougule MA, Ingole SM, Stadler FJ, Mane RS, Naushad M, Patil VB (2017) Electrochemical synthesis and potential electrochemical energy storage performance of nodule-type polyaniline. J Colloid Interface Sci 487:458–464. https://doi.org/10.1016/j.jcis.2016.09.038

    Article  CAS  Google Scholar 

  42. Deng J, Guo J, Liu P (2017) Growth of polyaniline nanomaterials in rapid-mixing polymerization. Colloids Surf A Physicochem Eng Asp 521:247–250. https://doi.org/10.1016/j.colsurfa.2016.09.016

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial supports from the National Natural Science Foundation of China (21274019) and Program for Innovative Research Team in University of Ministry of Education of China (IRT_16R13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongyi Qin or Youwei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, D., Qin, Z., Shen, Y. et al. Enhancing the formation and capacitance properties of interfacial polymerized polyaniline nanofibers by introducing small alcohol molecules. J Solid State Electrochem 22, 1227–1236 (2018). https://doi.org/10.1007/s10008-017-3866-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3866-y

Keywords

Navigation