Log in

Electrodeposition of Al-Ti alloy on mild steel from AlCl3-BMIC ionic liquid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of Al-Ti alloy on a mild steel substrate is examined in a Lewis acidic 66.7–33.3 mol% AlCl3-1-buthyl-3-methylimidazolium chloride ionic liquid containing TiCl4. Dense and compact Al-Ti alloy coatings with Ti content ranging from 5.3 to 11.4 at.% can be obtained under optimized conditions. The applied current densities and TiCl4 concentration are found to play central roles in controlling the alloy compositions and surface morphologies of the resultant Al-Ti alloy coatings. Ti content in Al-Ti alloys increases with initial increase in the current density and decreases when the current density is beyond 5 mA cm−2. In addition, the enhanced corrosion resistance of the mild steel substrate by the deposited Al-Ti alloy layers is evaluated via electrochemical techniques. The Al-Ti alloy coatings show much higher corrosion resistance than single Al coating, and this performance is improved with the increase of the Ti content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frankel GS, Russak MA, Jahnes CV, Mirzamaani M, Brusic VA (1989) J Electrochem Soc 136:1243–1244

    Article  CAS  Google Scholar 

  2. Yan Q, Yoshioka H, Habazaki H, Kawashima A, Asami K, Hashimoto K (1990) Corros Sci 31:401–406

    Article  CAS  Google Scholar 

  3. Hampshirea J, Kelly PJ, Teer DG (2004) Thin Solid Films 30:418–424

    Article  Google Scholar 

  4. Langrand L, Chausse A, Messina R (2001) Electrochim Acta 46:2407–2413

    Article  Google Scholar 

  5. Janowski GM, Stafford GR (1992) Metall Trans A 23:2715–2723

    Article  Google Scholar 

  6. Robin A, Ribeiro RB (2000) J Appl Electrochem 30:239–246

    Article  CAS  Google Scholar 

  7. Stafford GR, Hussey CL (2002) Advances in electrochemical science and engineering. In: Alkire RC, Kolb DM (eds) . Wiley, Weinheim, pp 275–347

    Google Scholar 

  8. Buzzeo MC, Evans RG, Compton RG (2004) ChemPhysChem 5:1106–1120

    Article  CAS  Google Scholar 

  9. Abedin S, El Z, Endres F (2006) ChemPhysChem 7:58–61

    Article  Google Scholar 

  10. Tsuda T, Arimoto S, Kuwabata S, Hussey CL (2008) J Electrochem Soc 155:D256–D262

    Article  CAS  Google Scholar 

  11. Pei QF, Hua YX, Xu CY, Zhang QB, Li Y, Ru JJ, Gong K (2013) Acta Phys -Chim Sin 29:946–952

    CAS  Google Scholar 

  12. Abedin S, El Z, Pölleth M, Meiss SA, Janek J, Endres F (2007) Green Chem 9:549–553

    Article  Google Scholar 

  13. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  14. Carlin RT, Osteryoung RA, Wilkes JS, Rovng J (1990) Inorg Chem 29:3003–3009

    Article  CAS  Google Scholar 

  15. Tsuda T, Hussey CL, Stafford GR, Bonevich JE (2003) J Electrochem Soc 150:C234–C243

    Article  CAS  Google Scholar 

  16. Aravinda CL, Mukhopadhyay I, Freyland W (2004) Phys Chem Chem Phys 6:5225–5231

    Article  CAS  Google Scholar 

  17. Pradhan D, Reddy RG (2009) Electrochim Acta 54:1874–1880

    Article  CAS  Google Scholar 

  18. Pradhan D, Reddy RG, Lahiri AK (2009) Metall Mater Trans B 40:114–122

    Article  Google Scholar 

  19. Ali MR, Nishikuta A, Tsuda T (2003) Indian Journal of Chemical Technology 10:14–20

    CAS  Google Scholar 

  20. Tsuda T, Kuwabata S, Stafford GR, Hussey CL (2013) J Solid State Electrochem 17:409–417

    Article  CAS  Google Scholar 

  21. Lipsztajn M, Osteryoung RA (1985) Inorg Chem 24:706–715

    Google Scholar 

  22. Liu QX, Abedin S, El Z, Endres F (2006) Surface & Coatings Technology 201:1352–1356

    Article  CAS  Google Scholar 

  23. Smialowska-Szklarska. Z (1999) Corros Sci 41:1743–1767

    Article  Google Scholar 

  24. Pride ST, Scully JR, Hudson JL (1994) J Electrochem Soc 141:3028–3040

    Article  CAS  Google Scholar 

  25. Habazaki H, Shimizu K, Skeldon P, Thompson GE, Wood GC, Zhou X (1997) Trans Inst Met Finish 75:18–23

    CAS  Google Scholar 

  26. Tomcsányi L, Varga K, Bartik I, Horányi H, Maleczki E (1989) Electrochim Acta 34:855–859

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate for the support of the Natural Science Foundation of China (Project No. 21263007, 51274108) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunying Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Hua, Y., Zhang, Q. et al. Electrodeposition of Al-Ti alloy on mild steel from AlCl3-BMIC ionic liquid. J Solid State Electrochem 21, 1349–1356 (2017). https://doi.org/10.1007/s10008-016-3498-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3498-7

Keywords

Navigation