Log in

Solvent autoxidation, electrolyte decomposition, and performance deterioration of the aprotic Li-O2 battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrolyte decomposition is widely recognized as the greatest challenge to the successful development of the aprotic Li-O2 battery. The decomposition of the organic ethers, which are the commonly used electrolyte solvents in the current studies, can be chemical or electrochemical during discharge or charge. In this paper, the influence of oxygen on the decomposition of the ether-based electrolyte is discussed. Ether solvents are found to be oxidized in contact with oxygen whether the cells operate or not. The solvent autoxidation significantly promotes the electrolyte decomposition during the discharge process of the ether-based Li-O2 battery. As a result, the oxygen exposure time before battery operation significantly affects the electrochemical performance of the ether-based Li-O2 battery. After the prolonged exposure to oxygen, both the discharge capacity and the working potential of the battery decrease to some extent. More importantly, the recharge potential of the battery greatly increases with extending the previous oxygen exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  2. Park M, Sun H, Lee H, Lee J, Cho J (2012) Adv Energy Mater 2:780–800

    Article  CAS  Google Scholar 

  3. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) J Electrochem Soc 159:R1–R30

    Article  CAS  Google Scholar 

  4. Girishkumar G, McCloskey BD, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  5. Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Electrochemistry 5:403–405

    Article  Google Scholar 

  6. Bryantsev VS, Blanco M (2011) J Phys Chem Lett 2:379–383

    Article  CAS  Google Scholar 

  7. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F, Novak P, Bruce PG (2011) J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  8. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2:1161–1166

    Article  CAS  Google Scholar 

  9. Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, **ao J, Nie Z, Hu D, Wang D, Zhang JG (2011) J Power Sources 196:9631–9639

    Article  CAS  Google Scholar 

  10. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) J Phys Chem A 115:12399–12409

    Article  CAS  Google Scholar 

  11. Black R, Oh SH, Lee J-H, Yim T, Adams B, Nazar LF (2012) J Am Chem Soc 134:2902–2905

    Article  CAS  Google Scholar 

  12. Schwenke KU, Meini S, Wu X, Gasteiger HA, Piana M (2013) Phys Chem Chem Phys 15:11830–11839

    Article  CAS  Google Scholar 

  13. Freunberger SA, Chen YH, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) Angew Chem Int Ed 50:8609–8613

    Article  CAS  Google Scholar 

  14. McCloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) J Phys Chem Lett 3:3043–3047

    Article  CAS  Google Scholar 

  15. Younesi R, Hahlin M, Björefors F, Johansson P, Edström K (2013) Chem Mater 25:77–84

    Article  CAS  Google Scholar 

  16. Sharon D, Etacheri V, Garsuch A, Afri M, Frimer AA, Aurbach D (2013) J Phys Chem Lett 4:127–131

    Article  CAS  Google Scholar 

  17. Assary RS, Lau KC, Amine K, Sun YK, Curtiss LA (2013) J Phys Chem C 117:8041–8049

    Article  CAS  Google Scholar 

  18. Xu W, Hu J, Engelhard MH, Towne SA, Hardy JS, **ao J, Feng J, Hu MY, Zhang J, Ding F, Gross ME, Zhang JG (2012) J Power Sources 215:240–247

    Article  CAS  Google Scholar 

  19. Younesi R, Hahlin M, Treskow M, Scheers J, Johansson P, Edström K (2012) J Phys Chem C 116:18597–18604

    Article  CAS  Google Scholar 

  20. Nasybulin E, Xu W, Engelhard MH, Nie Z, Burton SD, Cosimbescu L, Gross ME, Zhang J-G (2013) J Phys Chem C 117:2635–2645

    Article  CAS  Google Scholar 

  21. Black R, Lee JH, Adams B, Mims CA, Nazar LF (2013) Angew Chem Int Ed 52:392–396

    Article  CAS  Google Scholar 

  22. Lim H, Yilmaz E, Byon HR (2012) J Phys Chem Lett 3:3210–3215

    Article  CAS  Google Scholar 

  23. Li F, Zhang T, Yamada Y, Yamada A, Zhou H (2013) Adv Energy Mater 3:532–538

    Article  CAS  Google Scholar 

  24. Veith GM, Nanda J, Delmau LH, Dudney NJ (2012) J Phys Chem Lett 3:1242–1247

    Article  CAS  Google Scholar 

  25. Bryantsev VS, Faglioni F (2012) J Phys Chem A 116:7128–7138

    Article  CAS  Google Scholar 

  26. Wang H, **e K (2012) Electrochim Acta 64:29–34

    Article  CAS  Google Scholar 

  27. Zhu D, Zhang L, Song M, Wang X, Mi R, Liu H, Mei J, Lau LWM, Chen Y (2013) J Solid State Electrochem. doi:10.1007/s10008-013-2116-1

  28. Song M, Zhu D, Zhang L, Wang X, Huang L, Shi Q, Mi R, Liu H, Mei J, Lau LWM, Chen Y (2013) J Solid State Electrochem 17:2061–2069

    Article  CAS  Google Scholar 

  29. Suresh AK, Sharma MM, Sridhar T (2000) Ind Eng Chem Res 39:3958–3997

    Article  CAS  Google Scholar 

  30. Gowda SR, Brunet A, Wallraff GM, McCloskey BD (2013) J Phys Chem Lett 4:276–279

    Article  CAS  Google Scholar 

  31. Yu Y, Zhang B, He YB, Huang ZD, Oh SW, Kim JK (2013) J Mater Chem A 1:1163–1170

    Article  CAS  Google Scholar 

  32. Shui JL, Okasinski JS, Zhao D, Almer JD, Liu DJ (2012) ChemSusChem 5:2421–2426

    Article  CAS  Google Scholar 

  33. Assary RS, Lu J, Du P, Luo X, Zhang X, Ren Y, Curtiss LA, Amine K (2013) ChemSusChem 6:51–55

    Article  CAS  Google Scholar 

  34. Younesi R, Hahlin M, Roberts M, Edström K (2013) J Power Sources 225:40–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Synergistic Innovative Joint Foundation of AEP-SCU (no. 0082604132222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, D., Zhang, L., Song, M. et al. Solvent autoxidation, electrolyte decomposition, and performance deterioration of the aprotic Li-O2 battery. J Solid State Electrochem 17, 2865–2870 (2013). https://doi.org/10.1007/s10008-013-2202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2202-4

Keywords

Navigation